Results 1  10
of
481
Routing with Guaranteed Delivery in ad hoc Wireless Networks
 WIRELESS NETWORKS
, 2001
"... We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of ..."
Abstract

Cited by 819 (84 self)
 Add to MetaCart
(Show Context)
We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A byproduct of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.
Topology Control of Multihop Wireless Networks using Transmit Power Adjustment
, 2000
"... We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints connectivity and biconnectivity, and one optimization objective ..."
Abstract

Cited by 657 (3 self)
 Add to MetaCart
We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints connectivity and biconnectivity, and one optimization objective maximum power used. We present two centralized algorithms for use in static networks, and prove their optimality. For mobile networks, we present two distributed heuristics that adaptively adjust node transmit powers in response to topological changes and attempt to maintain a connected topology using minimum power. We analyze the throughput, delay, and power consumption of our algorithms using a prototype software implementation, an emulation of a powercontrollable radio, and a detailed channel model. Our results show that the performance of multihop wireless networks in practice can be substantially increased with topology control.
A Survey on PositionBased Routing in Mobile AdHoc Networks
 IEEE Network
, 2001
"... We present an overview of adhoc routing protocols that make forwarding decisions based on the geographical position of a packet's destination. Other than the destination 's position, each node needs to know only its own position and the position of its onehop neighbors in order to forwar ..."
Abstract

Cited by 461 (16 self)
 Add to MetaCart
(Show Context)
We present an overview of adhoc routing protocols that make forwarding decisions based on the geographical position of a packet's destination. Other than the destination 's position, each node needs to know only its own position and the position of its onehop neighbors in order to forward packets. Since it is not necessary to maintain explicit routes, positionbased routing does scale well even if the network is highly dynamic. This is a major advantage in a mobile adhoc network where the topology may change frequently. The main prerequisite for positionbased routing is that a sender can obtain the current position of the destination. Therefore, recently proposed location services are discussed in addition to positionbased packet forwarding strategies. We provide a qualitative comparison of the approaches in both areas and investigate opportunities for future research.
Distributed topology control for power efficient operation in multihop wireless ad hoc networks
, 2001
"... Abstract — The topology of wireless multihop ad hoc networks can be controlled by varying the transmission power of each node. We propose a simple distributed algorithm where each node makes local decisions about its transmission power and these local decisions collectively guarantee global connecti ..."
Abstract

Cited by 357 (19 self)
 Add to MetaCart
(Show Context)
Abstract — The topology of wireless multihop ad hoc networks can be controlled by varying the transmission power of each node. We propose a simple distributed algorithm where each node makes local decisions about its transmission power and these local decisions collectively guarantee global connectivity. Specifically, based on the directional information, a node grows it transmission power until it finds a neighbor node in every direction. The resulting network topology increases network lifetime by reducing transmission power and reduces traffic interference by having low node degrees. Moreover, we show that the routes in the multihop network are efficient in power consumption. We give an approximation scheme in which the power consumption of each route can be made arbitrarily close to the optimal by carefully choosing the parameters. Simulation results demonstrate significant performance improvements. I.
Geometric AdHoc Routing: Of Theory and Practice
, 2003
"... All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of adhoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly e#cient on ..."
Abstract

Cited by 304 (13 self)
 Add to MetaCart
(Show Context)
All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of adhoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly e#cient on practical averagecase networks, however is also in theory asymptotically worstcase optimal. On the other hand we are able to drop the formerly necessary assumption that the distance between network nodes may not fall below a constant value, an assumption that cannot be maintained for practical networks. Abandoning this assumption we identify from a theoretical point of view two fundamentamentally di#erent classes of cost metrics for routing in adhoc networks.
On the Minimum Node Degree and Connectivity of a Wireless Multihop Network
 ACM MobiHoc
, 2002
"... This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spatial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distri ..."
Abstract

Cited by 297 (4 self)
 Add to MetaCart
This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spatial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distribution of the nodes and a simple link model — we derive an analytical expression that enables the determination of the required range r0 that creates, for a given node density ρ, an almost surely k–connected network. Equivalently, if the maximum r0 of the nodes is given, we can find out how many nodes are needed to cover a certain area with a k–connected network. We also investigate these questions by various simulations and thereby verify our analytical expressions. Finally, the impact of mobility is discussed. The results of this paper are of practical value for researchers in this area, e.g., if they set the parameters in a network–level simulation of a mobile ad hoc network or if they design a wireless sensor network. Categories and Subject Descriptors C.2 [Computercommunication networks]: Network architecture and design—wireless communication, network communications, network topology; G.2.2 [Discrete mathematics]: Graph theory; F.2.2 [Probability and statistics]: Stochastic processes
SPEED: A Stateless Protocol for RealTime Communication In Sensor Networks
, 2003
"... In this paper, we present a realtime communication protocol for sensor networks, called SPEED. The protocol provides three types of realtime communication services, namely, realtime unicast, realtime areamulticast and realtime areaanycast. SPEED is specifically tailored to be a stateless, loc ..."
Abstract

Cited by 294 (31 self)
 Add to MetaCart
In this paper, we present a realtime communication protocol for sensor networks, called SPEED. The protocol provides three types of realtime communication services, namely, realtime unicast, realtime areamulticast and realtime areaanycast. SPEED is specifically tailored to be a stateless, localized algorithm with minimal control overhead Endtoend soft realtime communication is achieved by maintaining a desired delivery speed across the sensor network through a novel combination of feedback control and nondeterministic geographic forwarding. SPEED is a highly efficient and scalable protocol for sensor networks where the resources of each node are scarce. Theoretical analysis, simulation experiments and a real implementation on Berkeley motes are provided to validate our claims.
Mobile ad hoc networking: imperatives and challenges
, 2003
"... Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically selforganize into arbitrary and temporary, "adhoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no preexi ..."
Abstract

Cited by 275 (7 self)
 Add to MetaCart
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically selforganize into arbitrary and temporary, "adhoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no preexisting communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET's characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.
PowerAware Localized Routing in Wireless Networks
, 2000
"... Recently, a cost aware metric for wireless networks based on remaining battery power at nodes was proposed for shortestcost routing algorithms, assuming constant transmission power. Power aware metrics where transmission power depends on distance between nodes, and corresponding shortestpower algo ..."
Abstract

Cited by 270 (34 self)
 Add to MetaCart
(Show Context)
Recently, a cost aware metric for wireless networks based on remaining battery power at nodes was proposed for shortestcost routing algorithms, assuming constant transmission power. Power aware metrics where transmission power depends on distance between nodes, and corresponding shortestpower algorithms were also recently proposed. We define a new powercost metric based on the combination of both node's lifetime and distance based power metrics. We investigate some properties of power adjusted transmissions, and show that, if additional nodes can be placed at desired locations between two nodes at distance d, the transmission power can be made linear in d as opposed to d a dependence for a2. This provides basis for power, cost, and powercost localized routing algorithms, where nodes make routing decisions solely on the basis of location of their neighbors and destination. Power aware routing algorithm attempts to minimize the total power needed to route a message between a source...