Results 1 
3 of
3
Decision Problems for Propositional Linear Logic
, 1990
"... Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, ..."
Abstract

Cited by 90 (17 self)
 Add to MetaCart
Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, which indicates unboundedness of resources, the decision problem becomes pspacecomplete. We also establish membership in np for the multiplicative fragment, npcompleteness for the multiplicative fragment extended with unrestricted weakening, and undecidability for certain fragments of noncommutative propositional linear logic. 1 Introduction Linear logic, introduced by Girard [14, 18, 17], is a refinement of classical logic which may be derived from a Gentzenstyle sequent calculus axiomatization of classical logic in three steps. The resulting sequent system Lincoln@CS.Stanford.EDU Department of Computer Science, Stanford University, Stanford, CA 94305, and the Computer Science Labo...
Linear Logic
, 1992
"... this paper we will restrict attention to propositional linear logic. The sequent calculus notation, due to Gentzen [10], uses roman letters for propositions, and greek letters for sequences of formulas. A sequent is composed of two sequences of formulas separated by a `, or turnstile symbol. One may ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
this paper we will restrict attention to propositional linear logic. The sequent calculus notation, due to Gentzen [10], uses roman letters for propositions, and greek letters for sequences of formulas. A sequent is composed of two sequences of formulas separated by a `, or turnstile symbol. One may read the sequent \Delta ` \Gamma as asserting that the multiplicative conjunction of the formulas in \Delta together imply the multiplicative disjunction of the formulas in \Gamma. A sequent calculus proof rule consists of a set of hypothesis sequents, displayed above a horizontal line, and a single conclusion sequent, displayed below the line, as below: Hypothesis1 Hypothesis2 Conclusion 4 Connections to Other Logics