Results 1 
7 of
7
A reformulation of Hilbert’s tenth problem through Quantum Mechanics
, 2001
"... Inspired by Quantum Mechanics, we reformulate Hilbert’s tenth problem in the domain of integer arithmetics into either a problem involving a set of infinitely coupled differential equations or a problem involving a Shrödinger propagator with some appropriate kernel. Either way, Mathematics and Physi ..."
Abstract

Cited by 17 (9 self)
 Add to MetaCart
(Show Context)
Inspired by Quantum Mechanics, we reformulate Hilbert’s tenth problem in the domain of integer arithmetics into either a problem involving a set of infinitely coupled differential equations or a problem involving a Shrödinger propagator with some appropriate kernel. Either way, Mathematics and Physics could be combined for Hilbert’s tenth problem and for the notion of effective computability. 1
Hypercomputability of quantum adiabatic processes: facts versus prejudices
 http://arxiv.org/quantph/0504101
, 2005
"... Abstract. We give an overview of a quantum adiabatic algorithm for Hilbert’s tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diopha ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We give an overview of a quantum adiabatic algorithm for Hilbert’s tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementations. “To believe otherwise is merely to cling to a prejudice which only gives rise to further prejudices... ” 1
An algebraic characterization of the halting probability
 FUNDAMENTA INFORMATICAE
, 2007
"... Using 1947 work of Post showing that the word problem for semigroups is unsolvable, we explicitly exhibit an algebraic characterization of the bits of the halting probability Ω. Our proof closely follows a 1978 formulation of Post’s work by M. Davis. The proof is selfcontained and not very complicat ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Using 1947 work of Post showing that the word problem for semigroups is unsolvable, we explicitly exhibit an algebraic characterization of the bits of the halting probability Ω. Our proof closely follows a 1978 formulation of Post’s work by M. Davis. The proof is selfcontained and not very complicated.
BioSystems 77 (2004) 175–194 Biosteps beyond Turing
, 2004
"... Are there ‘biologically computing agents ’ capable to compute Turing uncomputable functions? It is perhaps tempting to dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we contend that the answer is not theoretically negativ ..."
Abstract
 Add to MetaCart
Are there ‘biologically computing agents ’ capable to compute Turing uncomputable functions? It is perhaps tempting to dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we contend that the answer is not theoretically negative. Our results will be formulated in the language of membrane computing (P systems). Some mathematical results presented here are interesting in themselves. In contrast with most speedup methods which are based on nondeterminism, our results rest upon some universality results proved for deterministic P systems. These results will be used for building “accelerated P systems”. In contrast with the case of Turing machines, acceleration is a part of the hardware (not a quality of the environment) and it is realised either by decreasing the size of “reactors ” or by speedingup the communication channels. Consequently, two acceleration postulates of biological inspiration are introduced; each of them poses specific questions to biology. Finally, in a more speculative part of the paper, we will deal with Turing noncomputability activity of the brain and possible forms of (extraterrestrial) intelligence.
REPRESENTATIONS OF Ω IN NUMBER THEORY: FINITUDE VERSUS PARITY
"... Abstract. We present a new method for expressing Chaitin’s random real, Ω, through Diophantine equations. Where Chaitin’s method causes a particular quantity to express the bits of Ω by fluctuating between finite and infinite values, in our method this quantity is always finite and the bits of Ω are ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. We present a new method for expressing Chaitin’s random real, Ω, through Diophantine equations. Where Chaitin’s method causes a particular quantity to express the bits of Ω by fluctuating between finite and infinite values, in our method this quantity is always finite and the bits of Ω are expressed in its fluctuations between odd and even values, allowing for some interesting developments. We then use exponential Diophantine equations to simplify this result and finally show how both methods can also be used to create polynomials which express the bits of Ω in the number of positive values they assume.