Results 1  10
of
152
Shock Graphs and Shape Matching
, 1997
"... We have been developing a theory for the generic representation of 2D shape, where structural descriptions are derived from the shocks (singularities) of a curve evolution process, acting on bounding contours. We now apply the theory to the problem of shape matching. The shocks are organized into a ..."
Abstract

Cited by 270 (37 self)
 Add to MetaCart
(Show Context)
We have been developing a theory for the generic representation of 2D shape, where structural descriptions are derived from the shocks (singularities) of a curve evolution process, acting on bounding contours. We now apply the theory to the problem of shape matching. The shocks are organized into a directed, acyclic shock graph, and complexity is managed by attending to the most significant (central) shape components first. The space of all such graphs is highly structured and can be characterized by the rules of a shock graph grammar. The grammar permits a reduction of a shock graph to a unique rooted shock tree. We introduce a novel tree matching algorithm which finds the best set of corresponding nodes between two shock trees in polynomial time. Using a diverse database of shapes, we demonstrate our system's performance under articulation, occlusion, and changes in viewpoint.
Shape quantization and recognition with randomized trees
 NEURAL COMPUTATION
, 1997
"... We explore a new approach to shape recognition based on a virtually infinite family of binary features ("queries") of the image data, designed to accommodate prior information about shape invariance and regularity. Each query corresponds to a spatial arrangement ofseveral local topographic ..."
Abstract

Cited by 264 (20 self)
 Add to MetaCart
We explore a new approach to shape recognition based on a virtually infinite family of binary features ("queries") of the image data, designed to accommodate prior information about shape invariance and regularity. Each query corresponds to a spatial arrangement ofseveral local topographic codes ("tags") which are in themselves too primitive and common to be informative about shape. All the discriminating power derives from relative angles and distances among the tags. The important attributes of the queries are (i) a natural partial ordering corresponding to increasing structure and complexity; (ii) semiinvariance, meaning that most shapes of a given class will answer the same way to two queries which are successive in the ordering; and (iii) stability, since the queries are not based on distinguished points and substructures. No classifier based on the full feature set can be evaluated and it is impossible to determine a priori which arrangements are informative. Our approach is to select informative features and build tree classifiers at the same time by inductive learning. In effect, each tree provides an approximation to the full posterior where the features
Relative 3D reconstruction using multiples uncalibrated images
, 1992
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 95 (15 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ModelBased Object Recognition  A Survey of Recent Research
, 1994
"... We survey the main ideas behind recent research in modelbased object recognition. The survey covers representations for models and images and the methods used to match them. Perceptual organization, the use of invariants, indexing schemes, and match verification are also reviewed. We conclude that ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
(Show Context)
We survey the main ideas behind recent research in modelbased object recognition. The survey covers representations for models and images and the methods used to match them. Perceptual organization, the use of invariants, indexing schemes, and match verification are also reviewed. We conclude that there is still much room for improvement in the scope, robustness, and efficiency of object recognition methods. We identify what we believe are the ways improvements will be achieved. ii Contents 1. Introduction .................................................................................................................................... 1 2. Representation ................................................................................................................................ 3 2.1 What makes a good shape representation? ............................................................................ 3 2.2 The choice of coordinate system ..........................................
Conic Reconstruction and Correspondence from Two Views
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... Conics are widely accepted as one of the most fundamental image features together with points and line segments. The problem of space reconstruction and correspondence of two conics from two views is addressed in this paper. It is shown that there are two independent polynomial conditions on the cor ..."
Abstract

Cited by 67 (3 self)
 Add to MetaCart
(Show Context)
Conics are widely accepted as one of the most fundamental image features together with points and line segments. The problem of space reconstruction and correspondence of two conics from two views is addressed in this paper. It is shown that there are two independent polynomial conditions on the corresponding pair of conics across two views, given the relative orientation of the two views. These two correspondence conditions are derived algebraically and one of them is shown to be fundamental in establishing the correspondences of conics. A unified closedform solution is also developed for both projective reconstruction of conics in space from two views for uncalibrated cameras and metric reconstruction from calibrated cameras. Experiments are conducted to demonstrate the discriminality of the correspondence conditions and the accuracy and stability of the reconstruction both for simulated and real images. Keywords conic, stereo correspondence, reconstruction. I. Introduction In...
Extracting projective structure from single perspective views of 3D point sets
 Proc. of 4th Int. Conf. on Computer Vision
, 1993
"... ..."
(Show Context)
Relative Affine Structure: Canonical Model for 3D from 2D Geometry and Applications
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewercentered invariant we call relative affine structure. Via a number of corollaries of our main results we show that our framework unifies previous work  including Euclidean, projec ..."
Abstract

Cited by 64 (9 self)
 Add to MetaCart
(Show Context)
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewercentered invariant we call relative affine structure. Via a number of corollaries of our main results we show that our framework unifies previous work  including Euclidean, projective and affine  in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Planar Object Recognition using Projective Shape Representation
 International Journal of Computer Vision
, 1995
"... We describe a model based recognition system, called LEWIS, for the identification of planar objects based on a projectively invariant representation of shape. The advantages of this shape description include simple model acquisition (direct from images), no need for camera calibration or object pos ..."
Abstract

Cited by 63 (9 self)
 Add to MetaCart
(Show Context)
We describe a model based recognition system, called LEWIS, for the identification of planar objects based on a projectively invariant representation of shape. The advantages of this shape description include simple model acquisition (direct from images), no need for camera calibration or object pose computation, and the use of index functions. We describe the feature construction and recognition algorithms in detail and provide an analysis of the combinatorial advantages of using index functions. Index functions are used to select models from a model base and are constructed from projective invariants based on algebraic curves and a canonical projective coordinate frame. Examples are given of object recognition from images of real scenes, with extensive object libraries. Successful recognition is demonstrated despite partial occlusion by unmodelled objects, and realistic lighting conditions. 1 Introduction 1.1 Overview In the context of this paper, recognition is defined as the prob...
Representation and Recognition of FreeForm Surfaces
, 1992
"... We introduce a new surface representation for recognizing curved objects. Our approach begins by representing an object by a discrete mesh of points built from range data or from a geometric model of the object. The mesh is computed from the data by deforming a standard shaped mesh, for example, an ..."
Abstract

Cited by 62 (7 self)
 Add to MetaCart
(Show Context)
We introduce a new surface representation for recognizing curved objects. Our approach begins by representing an object by a discrete mesh of points built from range data or from a geometric model of the object. The mesh is computed from the data by deforming a standard shaped mesh, for example, an ellipsoid, until it fits the surface of the object. We define local regularity constraints that the mesh must satisfy. We then define a canonical mapping between the mesh describing the object and a standard spherical mesh. A surface curvature index that is poseinvariant is stored at every node of the mesh. We use this object representation for recognition by comparing the spherical model of a reference object with the model extracted from a new observed scene. We show how the similarity between reference model and observed data can be evaluated and we show how the pose of the reference object in the observed scene can be easily computed using this representation. We present results on real range images which show that this approach to modelling and recognizing threedimensional objects has three main advantages: First, it is applicable to complex curved surfaces that cannot be handled by conventional techniques. Second, it reduces the recognition problem to the computation of similarity between spherical distributions; in particular, the recognition algorithm does not require any combinatorial search. Finally, even though it is based on a spherical mapping, the approach can handle occlusions and partial views.
Visual interpretation of known objects in constrained scenes
 Phil. Trans. R. Soc. Lond. B
, 1992
"... Recent work on the visual interpretation of traffic scenes is described which relies heavily on a priori knowledge of the scene and position of the camera, and expectations about the shapes of vehicles and their likely movements in the scene. Knowledge is represented in the computer as explicit 3D ..."
Abstract

Cited by 60 (12 self)
 Add to MetaCart
Recent work on the visual interpretation of traffic scenes is described which relies heavily on a priori knowledge of the scene and position of the camera, and expectations about the shapes of vehicles and their likely movements in the scene. Knowledge is represented in the computer as explicit 3D geometrical models, dynamic filters, and descriptions of behaviour. Modelbased vision, based on reasoning with analog models, avoids many of the classical problems in visual perception: recognition is robust against changes in the image of shape, size, colour and illumination. The 3D understanding of the scene which results also deals naturally with occlusion, and allows the behaviour of vehicles to be interpreted. The experiments with machine vision raise questions about the part played by perceptual context for object recognition in natural vision, and the neural mechanisms which might serve such a role. Vision in constrained scenes  2  GDS 8/3/92 1. INTRODUCTION Highlevel vision i...