Results 1  10
of
174
Probabilistic Simulations for Probabilistic Processes
, 1994
"... Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed version o ..."
Abstract

Cited by 271 (18 self)
 Add to MetaCart
Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed version of the Timed Probabilistic concurrent Computation Tree Logic (TPCTL) of Hansson. The definitions are made, and the evaluations carried out, in terms of a general labeled transition system model for concurrent probabilistic computation. The results cover weak simulations, which abstract from internal computation, as well as strong simulations, which do not.
Reasoning about Infinite Computations
 Information and Computation
, 1994
"... We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all ..."
Abstract

Cited by 252 (55 self)
 Add to MetaCart
We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all have the same expressive power and that their decision problems are all PSPACEcomplete. We also investigate connectives defined by alternating automata and show that they do not increase the expressive power of the logic or the complexity of the decision problem. 1 Introduction For many years, logics of programs have been tools for reasoning about the input/output behavior of programs. When dealing with concurrent or nonterminating processes (like operating systems) there is, however, a need to reason about infinite computations. Thus, instead of considering the first and last states of finite computations, we need to consider the infinite sequences of states that the program goes through...
A Logic for Reasoning about Time and Reliability
 Formal Aspects of Computing
, 1994
"... We present a logic for stating properties such as, "after a request for service there is at least a 98% probability that the service will be carried out within 2 seconds". The logic extends the temporal logic CTL by Emerson, Clarke and Sistla with time and probabilities. Formulas are interpreted ove ..."
Abstract

Cited by 250 (1 self)
 Add to MetaCart
We present a logic for stating properties such as, "after a request for service there is at least a 98% probability that the service will be carried out within 2 seconds". The logic extends the temporal logic CTL by Emerson, Clarke and Sistla with time and probabilities. Formulas are interpreted over discrete time Markov chains. We give algorithms for checking that a given Markov chain satisfies a formula in the logic. The algorithms require a polynomial number of arithmetic operations, in size of both the formula and This research report is a revised and extended version of a paper that has appeared under the title "A Framework for Reasoning about Time and Reliability" in the Proceeding of the 10 th IEEE Realtime Systems Symposium, Santa Monica CA, December 1989. This work was partially supported by the Swedish Board for Technical Development (STU) as part of Esprit BRA Project SPEC, and by the Swedish Telecommunication Administration. the Markov chain. A simple example is inc...
Model Checking of Probabilistic and Nondeterministic Systems
, 1995
"... . The temporal logics pCTL and pCTL* have been proposed as tools for the formal specification and verification of probabilistic systems: as they can express quantitative bounds on the probability of system evolutions, they can be used to specify system properties such as reliability and performance. ..."
Abstract

Cited by 205 (13 self)
 Add to MetaCart
. The temporal logics pCTL and pCTL* have been proposed as tools for the formal specification and verification of probabilistic systems: as they can express quantitative bounds on the probability of system evolutions, they can be used to specify system properties such as reliability and performance. In this paper, we present modelchecking algorithms for extensions of pCTL and pCTL* to systems in which the probabilistic behavior coexists with nondeterminism, and show that these algorithms have polynomialtime complexity in the size of the system. This provides a practical tool for reasoning on the reliability and performance of parallel systems. 1 Introduction Temporal logic has been successfully used to specify the behavior of concurrent and reactive systems. These systems are usually modeled as nondeterministic processes: at any moment in time, more than one future evolution may be possible, but a probabilistic characterization of their likelihood is normally not attempted. While ma...
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 133 (26 self)
 Add to MetaCart
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.
Approximate symbolic model checking of continuoustime Markov chains (Extended Abstract)
, 1999
"... . This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that t ..."
Abstract

Cited by 122 (22 self)
 Add to MetaCart
. This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steady stateoperator) and a Volterra integral equation system for timebounded until. We propose a symbolic approximate method for solving the integrals using MTDDs (multiterminal decision diagrams), a generalisation of MTBDDs. These new structures are suitable for numerical integration using quadrature formulas based on equallyspaced abscissas, like trapezoidal, Simpson and Romberg integration schemes. 1 Introduction The mechanised verification of a given (usually) finitestate model against a property expressed in some temporal logic is known as model checking. For probabilistic...
Model Checking for a Probabilistic Branching Time Logic with Fairness
 Distributed Computing
, 1998
"... We consider concurrent probabilistic systems, based on probabilistic automata of Segala & Lynch [55], which allow nondeterministic choice between probability distributions. These systems can be decomposed into a collection of "computation trees" which arise by resolving the nondeterministic, but n ..."
Abstract

Cited by 116 (36 self)
 Add to MetaCart
We consider concurrent probabilistic systems, based on probabilistic automata of Segala & Lynch [55], which allow nondeterministic choice between probability distributions. These systems can be decomposed into a collection of "computation trees" which arise by resolving the nondeterministic, but not probabilistic, choices. The presence of nondeterminism means that certain liveness properties cannot be established unless fairness is assumed. We introduce a probabilistic branching time logic PBTL, based on the logic TPCTL of Hansson [30] and the logic PCTL of [55], resp. pCTL of [14]. The formulas of the logic express properties such as "every request is eventually granted with probability at least p". We give three interpretations for PBTL on concurrent probabilistic processes: the first is standard, while in the remaining two interpretations the branching time quantifiers are taken to range over a certain kind of fair computation trees. We then present a model checking algorithm for...
Algebraic Reasoning for Probabilistic Concurrent Systems
 Proc. IFIP TC2 Working Conference on Programming Concepts and Methods
, 1990
"... We extend Milner's SCCS to obtain a calculus, PCCS, for reasoning about communicating probabilistic processes. In particular, the nondeterministic process summation operator of SCCS is replaced with a probabilistic one, in which the probability of behaving like a particular summand is given explicit ..."
Abstract

Cited by 94 (5 self)
 Add to MetaCart
We extend Milner's SCCS to obtain a calculus, PCCS, for reasoning about communicating probabilistic processes. In particular, the nondeterministic process summation operator of SCCS is replaced with a probabilistic one, in which the probability of behaving like a particular summand is given explicitly. The operational semantics for PCCS is based on the notion of probabilistic derivation, and is given structurally as a set of inference rules. We then present an equational theory for PCCS based on probabilistic bisimulation, an extension of Milner's bisimulation proposed by Larsen and Skou. We provide the first axiomatization of probabilistic bisimulation, a subset of which is relatively complete for finitestate probabilistic processes. In the probabilistic case, a notion of processes with almost identical behavior (i.e., with probability 1 \Gamma ffl, for ffl sufficiently small) appears to be more useful in practice than a notion of equivalence, since the latter is often too restricti...
Symbolic model checking for probabilistic processes
 IN PROCEEDINGS OF ICALP '97
, 1997
"... We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a stat ..."
Abstract

Cited by 81 (28 self)
 Add to MetaCart
We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a state. Our algorithm is based on the idea of representing the matrices used in the linear equation systems by MultiTerminal Binary Decision Diagrams (MTBDDs) introduced in Clarke et al [14]. Our procedure, based on the algorithm used by Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to represent Markov chains, and is efficient because it avoids explicit state space construction. A PCTL model checker is being implemented in Verus [9].
Knowledge, probability, and adversaries
 Journal of the ACM
, 1993
"... Abstract: What should it mean for an agent toknowor believe an assertion is true with probability:99? Di erent papers [FH88, FZ88a, HMT88] givedi erent answers, choosing to use quite di erent probability spaces when computing the probability that an agent assigns to an event. We showthat each choice ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
Abstract: What should it mean for an agent toknowor believe an assertion is true with probability:99? Di erent papers [FH88, FZ88a, HMT88] givedi erent answers, choosing to use quite di erent probability spaces when computing the probability that an agent assigns to an event. We showthat each choice can be understood in terms of a betting game. This betting game itself can be understood in terms of three types of adversaries in uencing three di erent aspects of the game. The rst selects the outcome of all nondeterministic choices in the system� the second represents the knowledge of the agent's opponent in the betting game (this is the key place the papers mentioned above di er) � the third is needed in asynchronous systems to choose the time the bet is placed. We illustrate the need for considering all three types of adversaries with a number of examples. Given a class of adversaries, we show howto assign probability spaces to agents in a way most appropriate for that class, where \most appropriate " is made precise in terms of this betting game. We conclude by showing how di erent assignments of probability spaces (corresponding to di erent opponents) yield di erent levels of guarantees in probabilistic coordinated attack.