Results 1  10
of
304
Automaton Logic
 International Journal of Theoretical Physics
, 1996
"... The experimental logic of Moore and Mealy type automata is investigated. key words: automaton logic; partition logic; comparison to quantum logic; intrinsic measurements 1 ..."
Abstract

Cited by 93 (47 self)
 Add to MetaCart
The experimental logic of Moore and Mealy type automata is investigated. key words: automaton logic; partition logic; comparison to quantum logic; intrinsic measurements 1
Multivalued Logics: A Uniform Approach to Inference in Artificial Intelligence
 Computational Intelligence
, 1988
"... This paper describes a uniform formalization of much of the current work in AI on inference systems. We show that many of these systems, including firstorder theorem provers, assumptionbased truth maintenance systems (atms's) and unimplemented formal systems such as default logic or circumscr ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
This paper describes a uniform formalization of much of the current work in AI on inference systems. We show that many of these systems, including firstorder theorem provers, assumptionbased truth maintenance systems (atms's) and unimplemented formal systems such as default logic or circumscription can be subsumed under a single general framework. We begin by defining this framework, which is based on a mathematical structure known as a bilattice. We present a formal definition of inference using this structure, and show that this definition generalizes work involving atms's and some simple nonmonotonic logics. Following the theoretical description, we describe a constructive approach to inference in this setting; the resulting generalization of both conventional inference and atms's is achieved without incurring any substantial computational overhead. We show that our approach can also be used to implement a default reasoner, and discuss a combination of default and atms methods th...
Refinement Calculus, Part I: Sequential Nondeterministic Programs
 STEPWISE REFINEMENT OF DISTRIBUTED SYSTEMS: MODELS, FORMALISMS, CORRECTNESS. PROCEEDINGS. 1989, VOLUME 430 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1989
"... A lattice theoretic framework for the calculus of program refinement is presented. Specifications and program statements are combined into a single (infinitary) language of commands which permits miraculous, angelic and demonic statements to be used in the description of program behavior. The weakes ..."
Abstract

Cited by 63 (3 self)
 Add to MetaCart
A lattice theoretic framework for the calculus of program refinement is presented. Specifications and program statements are combined into a single (infinitary) language of commands which permits miraculous, angelic and demonic statements to be used in the description of program behavior. The weakest precondition calculus is extended to cover this larger class of statements and a gametheoretic interpretation is given for these constructs. The language is complete, in the sense that every monotonic predicate transformer can be expressed in it. The usual program constructs can be defined as derived notions in this language. The notion of inverse statements is defined and its use in formalizing the notion of data refinement is shown.
GIB: Imperfect Information in a Computationally Challenging Game
, 2001
"... This paper investigates the problems arising in the construction of a program to play the ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
(Show Context)
This paper investigates the problems arising in the construction of a program to play the
Boolean Connection Algebras: A New Approach to the RegionConnection Calculus
 Artificial Intelligence
, 1999
"... The RegionConnection Calculus (RCC) is a well established formal system for qualitative spatial reasoning. It provides an axiomatization of space which takes regions as primitive, rather than as constructions from sets of points. The paper introduces boolean connection algebras (BCAs), and prove ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
The RegionConnection Calculus (RCC) is a well established formal system for qualitative spatial reasoning. It provides an axiomatization of space which takes regions as primitive, rather than as constructions from sets of points. The paper introduces boolean connection algebras (BCAs), and proves that these structures are equivalent to models of the RCC axioms. BCAs permit a wealth of results from the theory of lattices and boolean algebras to be applied to RCC. This is demonstrated by two theorems which provide constructions for BCAs from suitable distributive lattices. It is already well known that regular connected topological spaces yield models of RCC, but the theorems in this paper substantially generalize this result. Additionally, the lattice theoretic techniques used provide the first proof of this result which does not depend on the existence of points in regions. Keywords: RegionConnection Calculus, Qualitative Spatial Reasoning, Boolean Connection Algebra, Mer...
The complexity of the counting constraint satisfaction problem
 In ICALP (1
, 2008
"... The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be expressed as follows: given a relational structure G over the same vocabulary, determine the number of homomorphisms from G toH. In this paper we characterize relational structuresH for which#CSP(H) can ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
(Show Context)
The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be expressed as follows: given a relational structure G over the same vocabulary, determine the number of homomorphisms from G toH. In this paper we characterize relational structuresH for which#CSP(H) can be solved in polynomial time and prove that for all other structures the problem is #Pcomplete. 1
Complementation in abstract interpretation
 ACM Trans. Program. Lang. Syst
, 1997
"... Abstract. The reduced product of abstract domains is a rather well known operation in abstract interpretation. In this paper we study the inverse operation, which we call complementation. Such an operation allows to systematically decompose domains; it provides a systematic way to design new abstr ..."
Abstract

Cited by 43 (23 self)
 Add to MetaCart
Abstract. The reduced product of abstract domains is a rather well known operation in abstract interpretation. In this paper we study the inverse operation, which we call complementation. Such an operation allows to systematically decompose domains; it provides a systematic way to design new abstract domains; it allows to simplify domain verication problems, like correctness proofs; and it yields space saving representations for domains. We show that the complement exists in most cases, and we apply complementation to two well known abstract domains, notably to the Cousot and Cousot's comportment domain for analysis of functional languages and to the complex domain Sharing for aliasing analysis of logic languages. 1
Skills and Knowledge Structures
"... Suppose that is a set of problems and is a set of skills. A skill function assigns to each problem  i.e. to each element of  those sets of skills which are minimally sufficient to solve ; a problem function assigns to each set X of skills the set of problems which can be solved wi ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Suppose that is a set of problems and is a set of skills. A skill function assigns to each problem  i.e. to each element of  those sets of skills which are minimally sufficient to solve ; a problem function assigns to each set X of skills the set of problems which can be solved with these skills (a knowledge state). We explore the natural properties of such functions and show that these concepts are basically the same. Furthermore, we show that for every family of subsets of Q which includes the empty set and , there are a set of (abstract) skills and a problem function whose range is just . We also give a bound for the number of skills needed to generate a specific set of knowledge states, and discuss various ways to supply a set of knowledge states with an underlying skill theory. Finally, a procedure is described to determine a skill function using coverings in partial orders which is applied to set A of the Coloured Progressive Matrices test Raven (1965).
A RelationAlgebraic Approach to the Region Connection Calculus
 Fundamenta Informaticae
, 2001
"... We explore the relationalgebraic aspects of the region connection calculus (RCC) of Randell et al. (1992a). In particular, we present a refinement of the RCC8 table which shows that the axioms provide for more relations than are listed in the present table. We also show that each RCC model leads ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
We explore the relationalgebraic aspects of the region connection calculus (RCC) of Randell et al. (1992a). In particular, we present a refinement of the RCC8 table which shows that the axioms provide for more relations than are listed in the present table. We also show that each RCC model leads to a Boolean algebra. Finally, we prove that a refined version of the RCC5 table has as models all atomless Boolean algebras B with the natural ordering as the "part  of" relation, and that the table is closed under first order definable relations iff B is homogeneous. 1 Introduction Qualitative reasoning (QR) has its origins in the exploration of properties of physical systems when numerical information is not sufficient  or not present  to explain the situation at hand (Weld and Kleer, 1990). Furthermore, it is a tool to represent the abstractions of researchers who are constructing numerical systems which model the physical world. Thus, it fills a gap in data modeling which often l...
Functional Dependencies in Relational Databases: A Lattice Point of View
 Discrete Applied Mathematics
, 1992
"... ..."