Results 1  10
of
21
A Verified Compiler for an Impure Functional Language
, 2009
"... We present a verified compiler to an idealized assembly language from a small, untyped functional language with mutable references and exceptions. The compiler is programmed in the Coq proof assistant and has a proof of total correctness with respect to bigstep operational semantics for the source a ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
We present a verified compiler to an idealized assembly language from a small, untyped functional language with mutable references and exceptions. The compiler is programmed in the Coq proof assistant and has a proof of total correctness with respect to bigstep operational semantics for the source and target languages. Compilation is staged and includes standard phases like translation to continuationpassing style and closure conversion, as well as a common subexpression elimination optimization. In this work, our focus has been on discovering and using techniques that make our proofs easy to engineer and maintain. While most programming language work with proof assistants uses very manual proof styles, all of our proofs are implemented as adaptive programs in Coq’s tactic language, making it possible to reuse proofs unchanged as new language features are added. In this paper, we focus especially on phases of compilation that rearrange the structure of syntax with nested variable binders. That aspect has been a key challenge area in past compiler verification projects, with much more effort expended in the statement and proof of binderrelated lemmas than is found in standard pencilandpaper proofs. We show how to exploit the representation technique of parametric higherorder abstract syntax to avoid the need to prove any of the usual lemmas about binder manipulation, often leading to proofs that are actually shorter than their pencilandpaper analogues. Our strategy is based on a new approach to encoding operational semantics which delegates all concerns about substitution to the meta language, without using features incompatible with generalpurpose type theories like Coq’s logic.
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
Syntax for free: Representing syntax with binding using parametricity
 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2009
"... We show that, in a parametric model of polymorphism, the type ∀α.((α → α) → α) → (α → α → α) → α is isomorphic to closed de Bruijn terms. That is, the type of closed higherorder abstract syntax terms is isomorphic to a concrete representation. To demonstrate the proof we have constructed a mode ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
We show that, in a parametric model of polymorphism, the type ∀α.((α → α) → α) → (α → α → α) → α is isomorphic to closed de Bruijn terms. That is, the type of closed higherorder abstract syntax terms is isomorphic to a concrete representation. To demonstrate the proof we have constructed a model of parametric polymorphism inside the Coq proof assistant. The proof of the theorem requires parametricity over Kripke relations. We also investigate some variants of this representation.
LNgen: Tool Support for Locally Nameless Representations
"... Given the complexity of the metatheoretic reasoning involved with current programming languages and their type systems, techniques for mechanical formalization and checking of the metatheory have received much recent attention. In previous work, we advocated a combination of locally nameless represe ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Given the complexity of the metatheoretic reasoning involved with current programming languages and their type systems, techniques for mechanical formalization and checking of the metatheory have received much recent attention. In previous work, we advocated a combination of locally nameless representation and cofinite quantification as a lightweight style for carrying out such formalizations in the Coq proof assistant. As part of the presentation of that methodology, we described a number of operations associated with variable binding and listed a number of properties, called “infrastructure lemmas, ” about those operations that needed to be shown. The proofs of these infrastructure lemmas are generally straightforward, given a specification of the binding structure of the language. In this work, we present LNgen, a prototype tool for automatically generating these definitions, lemmas, and proofs from Ottlike language specifications. Furthermore, the tool also generates a recursion scheme for defining functions over syntax, which was not available in our previous work. We also show the soundness and completeness of our tool’s output. For untyped lambda terms, we prove the adequacy of our representation with respect to a fully concrete representation, and we argue that the representation is complete—that we generate the right set of lemmas—with respect to Gordon and Melham’s “Five Axioms of AlphaConversion. ” Finally, we claim that our recursion scheme is simpler to work with than either Gordon and Melham’s recursion scheme or the recursion scheme of Nominal Logic. 1.
Strongly Typed Term Representations in Coq
 J AUTOM REASONING
"... There are two approaches to formalizing the syntax of typed object languages in a proof assistant or programming language. The extrinsic approach is to first define a type that encodes untyped object expressions and then make a separate definition of typing judgements over the untyped terms. The int ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
There are two approaches to formalizing the syntax of typed object languages in a proof assistant or programming language. The extrinsic approach is to first define a type that encodes untyped object expressions and then make a separate definition of typing judgements over the untyped terms. The intrinsic approach is to make a single definition that captures welltyped object expressions, so illtyped expressions cannot even be expressed. Intrinsic encodings are attractive and naturally enforce the requirement that metalanguage operations on object expressions, such as substitution, respect object types. The price is that the metalanguage types of intrinsic encodings and operations involve nontrivial dependency, adding significant complexity. This paper describes intrinsicstyle formalizations of both simplytyped and polymorphic languages, and basic syntactic operations thereon, in the Coq proof assistant. The Coq types encoding objectlevel variables (de Bruijn indices) and terms are indexed by both type and typing environment. One key construction is the bootstrapping of definitions and lemmas about the action of substitutions in terms of similar ones for a simpler notion of renamings. In the simplytyped case, this yields definitions that are free of any use of type equality coercions. In the polymorphic case, some substitution operations do still require type coercions, which we at least partially tame by uniform use of heterogeneous equality.
Metatheory à la carte
 In POPL ’13
, 2013
"... Formalizing metatheory, or proofs about programming languages, in a proof assistant has many wellknown benefits. However, the considerable effort involved in mechanizing proofs has prevented it from becoming standard practice. This cost can be amortized by reusing as much of an existing formalizat ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Formalizing metatheory, or proofs about programming languages, in a proof assistant has many wellknown benefits. However, the considerable effort involved in mechanizing proofs has prevented it from becoming standard practice. This cost can be amortized by reusing as much of an existing formalization as possible when building a new language or extending an existing one. Unfortunately reuse of components is typically adhoc, with the language designer cutting and pasting existing definitions and proofs, and expending considerable effort to patch up the results. This paper presents a more structured approach to the reuse of formalizations of programming language semantics through the composition of modular definitions and proofs. The key contribution is the development of an approach to induction for extensible Church encodings which uses a novel reinterpretation of the universal property of folds. These encodings provide the foundation for a framework, formalized in Coq, which uses type classes to automate the composition of proofs from modular components. Several interesting language features, including binders and general recursion, illustrate the capabilities of our framework. We reuse these features to build fully mechanized definitions and proofs for a number of languages, including a version of miniML. Bounded induction enables proofs of properties for noninductive semantic functions, and mediating type classes enable proof adaptation for more featurerich languages. 1.
Functional programming with structured graphs
 In Proceedings of the 17th ACM SIGPLAN international conference on Functional programming, ICFP ’12
, 2012
"... This paper presents a new functional programming model for graph structures called structured graphs. Structured graphs extend conventional algebraic datatypes with explicit definition and manipulation of cycles and/or sharing, and offer a practical and convenient way to program graphs in functional ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This paper presents a new functional programming model for graph structures called structured graphs. Structured graphs extend conventional algebraic datatypes with explicit definition and manipulation of cycles and/or sharing, and offer a practical and convenient way to program graphs in functional programming languages like Haskell. The representation of sharing and cycles (edges) employs recursive binders and uses an encoding inspired by parametric higherorder abstract syntax. Unlike traditional approaches based on mutable references or node/edge lists, wellformedness of the graph structure is ensured statically and reasoning can be done with standard functional programming techniques. Since the binding structure is generic, we can define many useful generic combinators for manipulating structured graphs. We give applications and show how to reason about structured graphs.
Reasoning Using HigherOrder Abstract Syntax in a HigherOrder Logic Proof Environment: Improvements to Hybrid and a Case Study
"... is a joint program with Carleton University, administered by the Ottawa ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
is a joint program with Carleton University, administered by the Ottawa
Strong normalization for System F by HOAS on top of FOAS
"... Abstract—We present a point of view concerning HOAS (HigherOrder Abstract Syntax) and an extensive exercise in HOAS along this point of view. The point of view is that HOAS can be soundly and fruitfully regarded as a definitional extension on top of FOAS (FirstOrder Abstract Syntax). As such, HOAS ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract—We present a point of view concerning HOAS (HigherOrder Abstract Syntax) and an extensive exercise in HOAS along this point of view. The point of view is that HOAS can be soundly and fruitfully regarded as a definitional extension on top of FOAS (FirstOrder Abstract Syntax). As such, HOAS is not only an encoding technique, but also a higherorder view of a firstorder reality. A rich collection of concepts and proof principles is developed inside the standard mathematical universe to give technical life to this point of view. The exercise consists of a new proof of Strong Normalization for System F. HOAS makes our proof considerably more direct than previous proofs. The concepts and results presented here have been formalized in the theorem prover Isabelle/HOL.
Compiling Contextual Objects Bringing HigherOrder Abstract Syntax to Programmers
"... Binders in datastructures representing code or proofs can be represented in a variety of ways, from lowlevel firstorder representations such as de Bruijn indices to higherorder abstract syntax (HOAS), with nominal logic somewhere inbetween. HOAS is arguably the cleanest and highestlevel repres ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Binders in datastructures representing code or proofs can be represented in a variety of ways, from lowlevel firstorder representations such as de Bruijn indices to higherorder abstract syntax (HOAS), with nominal logic somewhere inbetween. HOAS is arguably the cleanest and highestlevel representation but comes with significant problems in expressiveness and efficiency. The Beluga language addresses this expressiveness problem by providing a powerful pattern matching facility as well as explicit control over contexts. This work aims to solve one important efficiency concern by showing how to compile Beluga down to lowerlevel primitives. It does so by compiling Beluga’s binders into an intermediate firstorder representation that abstracts over the eventual lowlevel representation, and by adapting MLstyle pattern compilation to the more general case of Beluga’s patterns. As an important side benefit, our work clarifies the connection between programming with HOAS in Beluga and programming with firstorder approaches based on names. D.3.4 [Programming Lan