Results 1 
2 of
2
Floating point verification in HOL Light: the exponential function
 UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY
, 1997
"... Since they often embody compact but mathematically sophisticated algorithms, operations for computing the common transcendental functions in floating point arithmetic seem good targets for formal verification using a mechanical theorem prover. We discuss some of the general issues that arise in veri ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
Since they often embody compact but mathematically sophisticated algorithms, operations for computing the common transcendental functions in floating point arithmetic seem good targets for formal verification using a mechanical theorem prover. We discuss some of the general issues that arise in verifications of this class, and then present a machinechecked verification of an algorithm for computing the exponential function in IEEE754 standard binary floating point arithmetic. We confirm (indeed strengthen) the main result of a previously published error analysis, though we uncover a minor error in the hand proof and are forced to confront several subtle issues that might easily be overlooked informally. The development described here includes, apart from the proof itself, a formalization of IEEE arithmetic, a mathematical semantics for the programming language in which the algorithm is expressed, and the body of pure mathematics needed. All this is developed logically from first prin...
Formal proofâ€”theory and practice
 Notices AMS
, 2008
"... Aformal proof is a proof written in a precise artificial language that admits only a fixed repertoire of stylized steps. This formal language is usually designed so that there is a purely mechanical process by which the correctness of a proof in the language can be verified. Nowadays, there are nume ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Aformal proof is a proof written in a precise artificial language that admits only a fixed repertoire of stylized steps. This formal language is usually designed so that there is a purely mechanical process by which the correctness of a proof in the language can be verified. Nowadays, there are numerous computer programs known as proof assistants that can check, or even partially construct, formal proofs written in their preferred proof language. These can be considered as practical, computerbased realizations of the traditional systems of formal symbolic logic and set theory proposed as foundations for mathematics. Why should we wish to create formal proofs?