Results 1 
6 of
6
Computational Strategies for the Riemann Zeta Function
 Journal of Computational and Applied Mathematics
, 2000
"... We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of th ..."
Abstract

Cited by 46 (9 self)
 Add to MetaCart
We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of the argument, the desired speed of computation, and the incidence of what we call "value recycling".
The Riemann Zeros and Eigenvalue Asymptotics
 SIAM Rev
, 1999
"... Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many feat ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many features of H cl are provided by the analogy; for example, the "Riemann dynamics" should be chaotic and have periodic orbits whose periods are multiples of logarithms of prime numbers. Statistics of the t n have a similar structure to those of the semiclassical En ; in particular, they display randommatrix universality at short range, and nonuniversal behaviour over longer ranges. Very refined features of the statistics of the t n can be computed accurately from formulae with quantum analogues. The RiemannSiegel formula for the zeta function is described in detail. Its interpretation as a relation between long and short periodic orbits gives further insights into the quantum spectral fluctuations. We speculate that the Riemann dynamics is related to the trajectories generated by the classical hamiltonian H cl = XP. Key words. spectral asymptotics, number theory AMS subject classifications. 11M26, 11M06, 35P20, 35Q40, 41A60, 81Q10, 81Q50 PII. S0036144598347497 1.
Evidence for a Spectral Interpretation of the Zeros of LFunctions
, 1998
"... By looking at the average behavior (nlevel density) of the low lying zeros of certain families of Lfunctions, we find evidence, as predicted by function field analogs, in favor of a spectral interpretation of the nontrivial zeros in terms of the classical compact groups. This is further supported ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
By looking at the average behavior (nlevel density) of the low lying zeros of certain families of Lfunctions, we find evidence, as predicted by function field analogs, in favor of a spectral interpretation of the nontrivial zeros in terms of the classical compact groups. This is further supported by numerical experiments for which an efficient algorithm to compute Lfunctions was developed and implemented. iii Acknowledgements When Mike Rubinstein woke up one morning he was shocked to discover that he was writing the acknowledgements to his thesis. After two screenplays, a 40000 word manifesto, and many fruitless attempts at making sushi, something resembling a detailed academic work has emerged for which he has people to thank. Peter Sarnak from Chebyshev's Bias to USp(1). For being a terrific advisor and teacher. For choosing problems suited to my talents and involving me in this great project to understand the zeros of Lfunctions. Zeev Rudnick and Andrew Oldyzko for many disc...
The Incomplete Gamma Functions Since Tricomi
 In Tricomi's Ideas and Contemporary Applied Mathematics, Atti dei Convegni Lincei, n. 147, Accademia Nazionale dei Lincei
, 1998
"... The theory of the incomplete gamma functions, as part of the theory of conuent hypergeometric functions, has received its rst systematic exposition by Tricomi in the early 1950s. His own contributions, as well as further advances made thereafter, are surveyed here with particular emphasis on asy ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
The theory of the incomplete gamma functions, as part of the theory of conuent hypergeometric functions, has received its rst systematic exposition by Tricomi in the early 1950s. His own contributions, as well as further advances made thereafter, are surveyed here with particular emphasis on asymptotic expansions, zeros, inequalities, computational methods, and applications.
Uniform Asymptotics for the Incomplete Gamma Functions Starting From Negative Values of the Parameters
"... We consider the asymptotic behavior of the incomplete gamma functions fl(\Gammaa; \Gammaz) and \Gamma(\Gammaa; \Gammaz) as a !1. Uniform expansions are needed to describe the transition area z a, in which case error functions are used as main approximants. We use integral representations of the i ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We consider the asymptotic behavior of the incomplete gamma functions fl(\Gammaa; \Gammaz) and \Gamma(\Gammaa; \Gammaz) as a !1. Uniform expansions are needed to describe the transition area z a, in which case error functions are used as main approximants. We use integral representations of the incomplete gamma functions and derive a uniform expansion by applying techniques used for the existing uniform expansions for fl(a; z) and \Gamma(a; z). The result is compared with Olver's uniform expansion for the generalized exponential integral. A numerical verification of the expansion is given in a final section.
Alan Turing and the Riemann Zeta Function
"... Turing encountered the Riemann zeta function as a student, and developed a lifelong fascination with it. Though his research in this area was not a major thrust of his career, he did make a number of pioneering contributions. Most have now been superseded by later work, but one technique that ..."
Abstract
 Add to MetaCart
Turing encountered the Riemann zeta function as a student, and developed a lifelong fascination with it. Though his research in this area was not a major thrust of his career, he did make a number of pioneering contributions. Most have now been superseded by later work, but one technique that