Results 1  10
of
316
Local Search Strategies for Satisfiability Testing
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1995
"... It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed rando ..."
Abstract

Cited by 270 (25 self)
 Add to MetaCart
It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed random walk", for escaping from local minima. We present experimental results showing how this strategy allows us to handle formulas that are substantially larger than those that can be solved with basic local search. We also present a detailed comparison of our random walk strategy with simulated annealing. Our results show that mixed random walk is the superior strategy on several classes of computationally difficult problem instances. Finally, we present results demonstrating the effectiveness of local search with walk for solving circuit synthesis and diagnosis problems.
Unifying SATbased and Graphbased Planning
, 1999
"... The Blackbox planning system unifies the planning as satisfiability framework (Kautz and Selman 1992, 1996) with the plan graph approach to STRIPS planning (Blum and Furst 1995). We show that STRIPS problems can be directly translated into SAT and efficiently solved using new randomized systematic s ..."
Abstract

Cited by 259 (13 self)
 Add to MetaCart
The Blackbox planning system unifies the planning as satisfiability framework (Kautz and Selman 1992, 1996) with the plan graph approach to STRIPS planning (Blum and Furst 1995). We show that STRIPS problems can be directly translated into SAT and efficiently solved using new randomized systematic solvers. For certain computationally challenging benchmark problems this unified approach outperforms both SATPLAN and Graphplan alone. We also demonstrate that polynomialtime SAT simplification algorithms applied to the encoded problem instances are a powerful complement to the "mutex" propagation algorithm that works directly on the plan graph. 1 Introduction It has often been observed that the classical AI planning problem (that is, planning with complete and certain information) is a form of logical deduction. Because early attempts to use general theorem provers to solve planning problems proved impractical, research became focused on specialized planning algorithms. Sometimes the rela...
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 250 (18 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
DomainIndependent Extensions to GSAT: Solving Large Structured Satisfiability Problems
 PROC. IJCAI93
, 1993
"... GSAT is a randomized local search procedure for solving propositional satisfiability problems (Selman et al. 1992). GSAT can solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam proc ..."
Abstract

Cited by 216 (12 self)
 Add to MetaCart
GSAT is a randomized local search procedure for solving propositional satisfiability problems (Selman et al. 1992). GSAT can solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam procedure. GSAT also efficiently solves encodings of graph coloring problems, Nqueens, and Boolean induction. However, GSAT does not perform as well on handcrafted encodings of blocksworld planning problems and formulas with a high degree of asymmetry. We present three strategies that dramatically improve GSAT's performance on such formulas. These strategies, in effect, manage to uncover hidden structure in the formula under considerations, thereby significantly extending the applicability of the GSAT algorithm.
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 161 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Knowledge compilation and theory approximation
 Journal of the ACM
, 1996
"... Computational efficiency is a central concern in the design of knowledge representation systems. In order to obtain efficient systems, it has been suggested that one should limit the form of the statements in the knowledge base or use an incomplete inference mechanism. The former approach is often t ..."
Abstract

Cited by 157 (5 self)
 Add to MetaCart
Computational efficiency is a central concern in the design of knowledge representation systems. In order to obtain efficient systems, it has been suggested that one should limit the form of the statements in the knowledge base or use an incomplete inference mechanism. The former approach is often too restrictive for practical applications, whereas the latter leads to uncertainty about exactly what can and cannot be inferred from the knowledge base. We present a third alternative, in which knowledge given in a general representation language is translated (compiled) into a tractable form — allowing for efficient subsequent query answering. We show how propositional logical theories can be compiled into Horn theories that approximate the original information. The approximations bound the original theory from below and above in terms of logical strength. The procedures are extended to other tractable languages (for example, binary clauses) and to the firstorder case. Finally, we demonstrate the generality of our approach by compiling concept descriptions in a general framebased language into a tractable form.
Answer Set Planning
"... In "answer set programming," solutions to a problem are represented by answer sets, and not by answer substitutions produced in response to a query, as in conventional logic programming. Instead of Prolog, answer set programming uses software systems capable of computing answer sets. This paper is a ..."
Abstract

Cited by 154 (6 self)
 Add to MetaCart
In "answer set programming," solutions to a problem are represented by answer sets, and not by answer substitutions produced in response to a query, as in conventional logic programming. Instead of Prolog, answer set programming uses software systems capable of computing answer sets. This paper is about applications of this idea to planning.
Constructing Conditional Plans by a TheoremProver
 Journal of Artificial Intelligence Research
, 1999
"... The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial sta ..."
Abstract

Cited by 142 (6 self)
 Add to MetaCart
The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial state and the outcomes of nondeterministic changes in the system. This setting raises the questions of how to represent the plans and how to perform plan search. The answers are quite different from those in the simpler classical framework. In this paper, we approach conditional planning from a new viewpoint that is motivated by the use of satisfiability algorithms in classical planning. Translating conditional planning to formulae in the propositional logic is not feasible because of inherent computational limitations. Instead, we translate conditional planning to quantified Boolean formulae. We discuss three formalizations of conditional planning as quantified Boolean formulae, and pr...
Towards an understanding of hillclimbing procedures for SAT
 In Proceedings of AAAI93
, 1993
"... Recently several local hillclimbing procedures for propositional satisability havebeen proposed, which are able to solve large and di cult problems beyond the reach ofconventional algorithms like DavisPutnam. By the introduction of some new variants of these procedures, we provide strong experimen ..."
Abstract

Cited by 137 (6 self)
 Add to MetaCart
Recently several local hillclimbing procedures for propositional satisability havebeen proposed, which are able to solve large and di cult problems beyond the reach ofconventional algorithms like DavisPutnam. By the introduction of some new variants of these procedures, we provide strong experimental evidence to support the conjecture that neither greediness nor randomness is important in these procedures. One of the variants introduced seems to o er signi cant improvements over earlier procedures. In addition, we investigate experimentally how their performance depends on their parameters. Our results suggest that runtime scales less than simply exponentially in the problem size. 1
Answer Set Programming and Plan Generation
 ARTIFICIAL INTELLIGENCE
, 2002
"... The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the ..."
Abstract

Cited by 137 (5 self)
 Add to MetaCart
The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.