Results 1 
1 of
1
Learning when Training Data are Costly: The Effect of Class Distribution on Tree Induction
, 2002
"... For large, realworld inductive learning problems, the number of training examples often must be limited due to the costs associated with procuring, preparing, and storing the data and/or the computational costs associated with learning from the data. One question of practical importance is: if n ..."
Abstract

Cited by 169 (9 self)
 Add to MetaCart
For large, realworld inductive learning problems, the number of training examples often must be limited due to the costs associated with procuring, preparing, and storing the data and/or the computational costs associated with learning from the data. One question of practical importance is: if n training examples are going to be selected, in what proportion should the classes be represented? In this article we analyze the relationship between the marginal class distribution of training data and the performance of classification trees induced from these data, when the size of the training set is fixed. We study twentysix data sets and, for each, determine the best class distribution for learning. Our results show that, for a fixed number of training examples, it is often possible to obtain improved classifier performance by training with a class distribution other than the naturally occurring class distribution. For example, we show that to build a classifier robust to different misclassification costs, a balanced class distribution generally performs quite well. We also describe and evaluate a budgetsensitive progressivesampling algorithm that selects training examples such that the resulting training set has a good (nearoptimal) class distribution for learning.