Results 1  10
of
689
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 770 (12 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 691 (65 self)
 Add to MetaCart
(Show Context)
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and highspeed analogtodigital converters, increasing the sampling rate or density beyond the current stateoftheart is very expensive. In this lecture, we will learn about a new technique that tackles these issues using compressive sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a more general linear measurement scheme coupled with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. 2
Sparse subspace clustering
 In CVPR
, 2009
"... We propose a method based on sparse representation (SR) to cluster data drawn from multiple lowdimensional linear or affine subspaces embedded in a highdimensional space. Our method is based on the fact that each point in a union of subspaces has a SR with respect to a dictionary formed by all oth ..."
Abstract

Cited by 231 (13 self)
 Add to MetaCart
(Show Context)
We propose a method based on sparse representation (SR) to cluster data drawn from multiple lowdimensional linear or affine subspaces embedded in a highdimensional space. Our method is based on the fact that each point in a union of subspaces has a SR with respect to a dictionary formed by all other data points. In general, finding such a SR is NP hard. Our key contribution is to show that, under mild assumptions, the SR can be obtained ’exactly ’ by using ℓ1 optimization. The segmentation of the data is obtained by applying spectral clustering to a similarity matrix built from this SR. Our method can handle noise, outliers as well as missing data. We apply our subspace clustering algorithm to the problem of segmenting multiple motions in video. Experiments on 167 video sequences show that our approach significantly outperforms stateoftheart methods. 1.
Robust Recovery of Signals From a Structured Union of Subspaces
, 2008
"... Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structu ..."
Abstract

Cited by 220 (49 self)
 Add to MetaCart
(Show Context)
Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structured signal models, in which x lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery of such signals from a given set of samples. More specifically, we treat the case in which x lies in a sum of k subspaces, chosen from a larger set of m possibilities. The samples are modelled as inner products with an arbitrary set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be formulated as that of recovering a blocksparse vector whose nonzero elements appear in fixed blocks. We then propose a mixed ℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modeling errors. A special case of our framework is that of recovering multiple measurement vectors (MMV) that share a joint sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence conditions under which the entire set can be determined efficiently.
Sparsest solutions of underdetermined linear systems via ℓ
"... We present a condition on the matrix of an underdetermined linear system which guarantees that the solution of the system with minimal ℓqquasinorm is also the sparsest one. This generalizes, and sightly improves, a similar result for the ℓ1norm. We then introduce a simple numerical scheme to compu ..."
Abstract

Cited by 188 (11 self)
 Add to MetaCart
(Show Context)
We present a condition on the matrix of an underdetermined linear system which guarantees that the solution of the system with minimal ℓqquasinorm is also the sparsest one. This generalizes, and sightly improves, a similar result for the ℓ1norm. We then introduce a simple numerical scheme to compute solutions with minimal ℓqquasinorm, and we study its convergence. Finally, we display the results of some experiments which indicate that the ℓqmethod performs better than other available methods. 1
Compressive Sensing and Structured Random Matrices
 RADON SERIES COMP. APPL. MATH XX, 1–95 © DE GRUYTER 20YY
"... These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to ..."
Abstract

Cited by 163 (19 self)
 Add to MetaCart
(Show Context)
These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate recovery of sparse vectors using ℓ1minimization.
Blocksparse signals: Uncertainty relations and efficient recovery
 IEEE TRANS. SIGNAL PROCESS
, 2010
"... We consider efficient methods for the recovery of blocksparse signals — i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we ..."
Abstract

Cited by 157 (19 self)
 Add to MetaCart
We consider efficient methods for the recovery of blocksparse signals — i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we introduce. We then show that a blockversion of the orthogonal matching pursuit algorithm recovers block ksparse signals in no more than k steps if the blockcoherence is sufficiently small. The same condition on blockcoherence is shown to guarantee successful recovery through a mixed `2=`1optimization approach. This complements previous recovery results for the blocksparse case which relied on small blockrestricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of blocksparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
From theory to practice: SubNyquist sampling of sparse wideband analog signals
 IEEE J. SEL. TOPICS SIGNAL PROCESS
, 2010
"... Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. ..."
Abstract

Cited by 150 (55 self)
 Add to MetaCart
Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with timevarying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of stateoftheart analog conversion technologies such as interleaved converters.
ModifiedCS: Modifying compressive sensing for problems with partially known support
 in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2009
"... Abstract—We study the problem of reconstructing a sparse signal from a limited number of its linear projections when a part of its support is known, although the known part may contain some errors. The “known ” part of the support, denoted, may be available from prior knowledge. Alternatively, in a ..."
Abstract

Cited by 129 (33 self)
 Add to MetaCart
(Show Context)
Abstract—We study the problem of reconstructing a sparse signal from a limited number of its linear projections when a part of its support is known, although the known part may contain some errors. The “known ” part of the support, denoted, may be available from prior knowledge. Alternatively, in a problem of recursively reconstructing time sequences of sparse spatial signals, one may use the support estimate from the previous time instant as the “known ” part. The idea of our proposed solution (modifiedCS) is to solve a convex relaxation of the following problem: find the signal that satisfies the data constraint and is sparsest outside of. We obtain sufficient conditions for exact reconstruction using modifiedCS. These are much weaker than those needed for compressive sensing (CS) when the sizes of the unknown part of the support and of errors in the known part are small compared to the support size. An important extension called regularized modifiedCS (RegModCS) is developed which also uses prior signal estimate knowledge. Simulation comparisons for both sparse and compressible signals are shown. Index Terms—Compressive sensing, modifiedCS, partially known support, prior knowledge, sparse reconstruction.