Results 1  10
of
34
Hybrid Logics: Characterization, Interpolation and Complexity
 Journal of Symbolic Logic
, 1999
"... Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We sho ..."
Abstract

Cited by 100 (35 self)
 Add to MetaCart
Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We show in detail that H(#; @) is modally natural. We begin by studying its expressivity, and provide model theoretic characterizations (via a restricted notion of EhrenfeuchtFrasse game, and an enriched notion of bisimulation) and a syntactic characterization (in terms of bounded formulas). The key result to emerge is that H(#; @) corresponds to the fragment of rstorder logic which is invariant for generated submodels. We then show that H(#; @) enjoys (strong) interpolation, provide counterexamples for its nite variable fragments, and show that weak interpolation holds for the sublanguage H(@). Finally, we provide complexity results for H(@) and other fragments and variants, and sh...
Internalizing Labelled Deduction
 Journal of Logic and Computation
, 2000
"... This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to ..."
Abstract

Cited by 74 (20 self)
 Add to MetaCart
This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to the object language, and to handle labelling discipline logically. This internalized approach to labelled deduction links neatly with the Gabbaystyle rules now widely used in modal Hilbertsystems, enables completeness results for a wide range of rstorder denable frame classes to be obtained automatically, and extends to many richer languages. The paper discusses related work by Jerry Seligman and Miroslava Tzakova and concludes with some reections on the status of labelling in modal logic. 1 Introduction Modern modal logic revolves around the Kripke satisfaction relation: M;w ': This says that the model M satises (or forces, or supports) the modal formula ' at the state w in M....
Temporalizing description logics
, 1998
"... Traditional rst order predicate logic is known to be designed for representing and manipulating static knowledge (e.g. mathematical theories). So are manyof its applications. Knowledge representation systems based on concept description logics are not exceptions. ..."
Abstract

Cited by 59 (20 self)
 Add to MetaCart
Traditional rst order predicate logic is known to be designed for representing and manipulating static knowledge (e.g. mathematical theories). So are manyof its applications. Knowledge representation systems based on concept description logics are not exceptions.
The Computational Complexity of Hybrid Temporal Logics
 Logic Journal of the IGPL
, 2000
"... In their simplest form, hybrid languages are propositional modal languages which can refer to states. They were introduced by Arthur Prior, the inventor of tense logic, and played an important role in his work: because they make reference to specic times possible, they remove the most serious obstac ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
In their simplest form, hybrid languages are propositional modal languages which can refer to states. They were introduced by Arthur Prior, the inventor of tense logic, and played an important role in his work: because they make reference to specic times possible, they remove the most serious obstacle to developing modal approaches to temporal representation and reasoning. However very little is known about the computational complexity of hybrid temporal logics. In this paper we analyze the complexity of the satisability problem of a number of hybrid temporal logics: the basic hybrid language over transitive frames; nominal tense logic over transitive frames, strict total orders, and transitive trees; nominal Until logic; and referential interval logic. We discuss the eects of including nominals, the @ operator, the somewhere modality E, and the dierence operator D. Adding nominals to tense logic leads for several frame{classes to an increase in complexity of the satisability pro...
Hybrid languages and temporal logic
 Logic J. IGPL
, 1999
"... Hybridization is a method invented by Arthur Prior for extending the expressive power of modal languages. Although developed in interesting ways by Robert Bull, and by the So a school (notably, George Gargov, Valentin Goranko, Solomon Passy and Tinko Tinchev), the method remains little known. In our ..."
Abstract

Cited by 36 (15 self)
 Add to MetaCart
Hybridization is a method invented by Arthur Prior for extending the expressive power of modal languages. Although developed in interesting ways by Robert Bull, and by the So a school (notably, George Gargov, Valentin Goranko, Solomon Passy and Tinko Tinchev), the method remains little known. In our view this has deprived temporal logic of a valuable tool. The aim of the paper is to explain why hybridization is useful in temporal logic. We make two major points, the rst technical, the second conceptual. First, we showthathybridization gives rise to wellbehaved logics that exhibit an interesting synergy between modal and classical ideas. This synergy, obvious for hybrid languages with full rstorder expressive strength, is demonstrated for a weaker local language capable of de ning the Until operator � we provide a minimal axiomatization, and show that in a wide range of temporally interesting cases extended completeness results can be obtained automatically. Second, we argue that the idea of sorted atomic symbols which underpins the hybrid enterprise can be developed further. To illustrate this, we discuss the advantages and disadvantages of a simple hybrid language which can quantify over paths. 1
Hybrid Logics
"... This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are extensions of standard modal logics, involving symbols that name individual states in models. The first results that are nowadays considered as part of the field date back to the early work of Arthur ..."
Abstract

Cited by 34 (10 self)
 Add to MetaCart
This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are extensions of standard modal logics, involving symbols that name individual states in models. The first results that are nowadays considered as part of the field date back to the early work of Arthur
Qualitative SpatioTemporal Representation and Reasoning: A Computational Perspective
 Exploring Artifitial Intelligence in the New Millenium
, 2001
"... this paper argues for the rich world of representation that lies between these two extremes." Levesque and Brachman (1985) 1 Introduction Time and space belong to those few fundamental concepts that always puzzled scholars from almost all scientific disciplines, gave endless themes to science fict ..."
Abstract

Cited by 30 (11 self)
 Add to MetaCart
this paper argues for the rich world of representation that lies between these two extremes." Levesque and Brachman (1985) 1 Introduction Time and space belong to those few fundamental concepts that always puzzled scholars from almost all scientific disciplines, gave endless themes to science fiction writers, and were of vital concern to our everyday life and commonsense reasoning. So whatever approach to AI one takes [ Russell and Norvig, 1995 ] , temporal and spatial representation and reasoning will always be among its most important ingredients (cf. [ Hayes, 1985 ] ). Knowledge representation (KR) has been quite successful in dealing separately with both time and space. The spectrum of formalisms in use ranges from relatively simple temporal and spatial databases, in which data are indexed by temporal and/or spatial parameters (see e.g. [ Srefik, 1995; Worboys, 1995 ] ), to much more sophisticated numerical methods developed in computational geom
Logics of Metric Spaces
, 2001
"... This paper investigates the expressive power and computational properties of languages designed for speaking about distances. `Distances' can be induced by difAuthors Addresses: Oliver Kutz, Frank Wolter, Institut fur Informatik, Abteilung intelligente Systeme, Universitat Leipzig, AugustusPlatz 10 ..."
Abstract

Cited by 27 (21 self)
 Add to MetaCart
This paper investigates the expressive power and computational properties of languages designed for speaking about distances. `Distances' can be induced by difAuthors Addresses: Oliver Kutz, Frank Wolter, Institut fur Informatik, Abteilung intelligente Systeme, Universitat Leipzig, AugustusPlatz 1011, 04109 Leipzig, Germany; Holger Sturm, Fachbereich Philosophie, Universitat Konstanz, 78457 Konstanz, Germany; NobuYuki Suzuki, Department of Mathematics, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka 422 8529, Japan; Michael Zakharyaschev, Department of Computer Science, King's College, Strand, London WC2R 2LS, U.K. Emails: {kutz, wolter}@informatik.unileipzig.de, holger.sturm@unikonstanz.de, smnsuzu@ipz.shizuoka.ac.jp, and mz@dcs.kcl.ac.uk Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee
Sequent Calculi for Nominal Tense Logics: A Step Towards Mechanization?
, 1999
"... . We define sequentstyle calculi for nominal tense logics characterized by classes of modal frames that are firstorder definable by certain \Pi 0 1 formulae and \Pi 0 2 formulae. The calculi are based on d'Agostino and Mondadori's calculus KE and therefore they admit a restricted cutrule ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
. We define sequentstyle calculi for nominal tense logics characterized by classes of modal frames that are firstorder definable by certain \Pi 0 1 formulae and \Pi 0 2 formulae. The calculi are based on d'Agostino and Mondadori's calculus KE and therefore they admit a restricted cutrule that is not eliminable. A nice computational property of the restriction is, for instance, that at any stage of the proof, only a finite number of potential cutformulae needs to be taken under consideration. Although restrictions on the proof search (preserving completeness) are given in the paper and most of them are theoretically appealing, the use of those calculi for mechanization is however doubtful. Indeed, we present sequent calculi for fragments of classical logic that are syntactic variants of the sequent calculi for the nominal tense logics. 1 Introduction Background. The nominal tense logics are extensions of Prior tense logics (see e.g. [Pri57, RU71]) by adding nomina...