Results 1 
1 of
1
Simpler Projective Plane Embedding
, 2000
"... A projective plane is equivalent to a disk with antipodal points identified. A graph is projective planar if it can be drawn on the projective plane with no crossing edges. A linear time algorithm for projective planar embedding has been described by Mohar. We provide a new approach that takes O(n ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
A projective plane is equivalent to a disk with antipodal points identified. A graph is projective planar if it can be drawn on the projective plane with no crossing edges. A linear time algorithm for projective planar embedding has been described by Mohar. We provide a new approach that takes O(n 2 ) time but is much easier to implement. We programmed a variant of this algorithm and used it to computationally verify the known list of all the projective plane obstructions. Key words: graph algorithms, surface embedding, graph embedding, projective plane, forbidden minor, obstruction 1 Background A graph G consists of a set V of vertices and a set E of edges, each of which is associated with an unordered pair of vertices from V . Throughout this paper, n denotes the number of vertices of a graph, and m is the number of edges. A graph is embeddable on a surface M if it can be drawn on M without crossing edges. Archdeacon's survey [2] provides an excellent introduction to topologica...