Results 1  10
of
36
Parameter Definability in the Recursively Enumerable Degrees
"... The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the # k relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k >= 7, the k relations bounded from below by a nonzero degree are uniformly defin ..."
Abstract

Cited by 34 (13 self)
 Add to MetaCart
The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the # k relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k >= 7, the k relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that...
An extension of the recursively enumerable Turing degrees
 Journal of the London Mathematical Society
, 2006
"... Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overco ..."
Abstract

Cited by 22 (16 self)
 Add to MetaCart
Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overcome this difficulty, we embed RT into a larger degree structure which is better behaved. Namely, consider the countable distributive lattice Pw consisting of the weak degrees (also known as Muchnik degrees) of mass problems associated with nonempty Π 0 1 subsets of 2ω. It is known that Pw contains a bottom degree 0 and a top degree 1 and is structurally rich. Moreover, Pw contains many specific, natural degrees other than 0 and 1. In particular, we show that in Pw one has 0 < d < r1 < inf(r2, 1) < 1. Here, d is the weak degree of the diagonally nonrecursive functions, and rn is the weak degree of the nrandom reals. It is known that r1 can be characterized as the maximum weak degree ofaΠ 0 1 subset of 2ω of positive measure. We now show that inf(r2, 1) can be characterized as the maximum weak degree of a Π 0 1 subset of 2ω, the Turing upward closure of which is of positive measure. We exhibit a natural embedding of RT into Pw which is onetoone, preserves the semilattice structure of RT, carries 0 to 0, and carries 0 ′ to 1. Identifying RT with its image in Pw, we show that all of the degrees in RT except 0 and 1 are incomparable with the specific degrees d, r1, and inf(r2, 1) inPw. 1.
On Presentations of Algebraic Structures
 in Complexity, Logic and Recursion Theory
, 1995
"... This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicat ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicated to the memory of my friend and teacher Chris Ash who contributed so much to effective structure theory and who left us far too young early in 1995
1998], The Π3theory of the computably enumerable Turing degrees is undecidable
 Trans. Amer. Math. Soc
, 1998
"... Abstract. We show the undecidability of the Π3theory of the partial order of computably enumerable Turing degrees. Recursively enumerable (henceforth called computably enumerable) sets arise naturally in many areas of mathematics, for instance in the study of elementary theories, as solution sets o ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. We show the undecidability of the Π3theory of the partial order of computably enumerable Turing degrees. Recursively enumerable (henceforth called computably enumerable) sets arise naturally in many areas of mathematics, for instance in the study of elementary theories, as solution sets of polynomials or as the word problems of finitely generated subgroups of finitely presented groups. Putting the computably enumerable sets
The recursively enumerable degrees
 in Handbook of Computability Theory, Studies in Logic and the Foundations of Mathematics 140
, 1996
"... ..."
Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability
 Archive for Mathematical Logic
, 1993
"... We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, parti ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particularly recursion theory, over the past thirty years through his research, writing and teaching. Here, I would like to concentrate on just one instance of that influence that I feel has been of special significance to the study of the degrees of unsolvability in general and on my own work in particular the conjectures and questions posed at the end of the two editions of Sacks's first book, the classic monograph Degrees of Unsolvability (Annals
The ∀∃theory of R(≤, ∨, ∧) is undecidable
 TRANS. AMER. MATH. SOC
, 2004
"... The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative solution ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative solution to this problem seems out of reach of the standard methods of interpretation of theories because the language is relational. We prove the undecidability of a fragment of the theory of R that lies between the two and three quantifier theories with ≤T but includes function symbols. Theorem. The two quantifier theory of (R, ≤, ∨, ∧), the r.e. degrees with Turing reducibility, supremum and infimum (taken to be any total function extending the infimum relation on R) is undecidable. The same result holds for various lattices of ideals of R which are natural extensions of R preserving join and infimum when it exits.
On Lachlan's major subdegree problem
 IN: SET THEORY AND THE CONTINUUM, PROCEEDINGS OF WORKSHOP ON SET THEORY AND THE CONTINUUM
, 1989
"... The Major Subdegree Problem of A. H. Lachlan (first posed in 1967) has become a longstanding open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The Major Subdegree Problem of A. H. Lachlan (first posed in 1967) has become a longstanding open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b> a if for any c.e. degree x, 0 ′ = b ∨ x if and only if 0 ′ = a ∨ x. In this paper, we show that every c.e. degree b ̸ = 0 or 0 ′ has a major subdegree, answering Lachlan’s question affirmatively. 1
Splitting and Nonsplitting, II: A Low_2 C.E. Degree Above Which 0' Is Not Splittable
, 2001
"... It is shown that there exists a low 2 Harrington nonsplitting base  that is, a low 2 computably enumerable (c.e.) degree a such that for any c.e. degrees x, y, if 0 # = x # y, then either 0 # = x # a or 0 # = y # a. Contrary to prior expectations, the standard Harrington nonsplitting con ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
It is shown that there exists a low 2 Harrington nonsplitting base  that is, a low 2 computably enumerable (c.e.) degree a such that for any c.e. degrees x, y, if 0 # = x # y, then either 0 # = x # a or 0 # = y # a. Contrary to prior expectations, the standard Harrington nonsplitting construction is incompatible with the low 2 ness requirements to be satisfied, and the proof given involves new techniques with potentially wider application. 1