Results 1  10
of
137
Quantum field theory on noncommutative spaces
"... A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommuta ..."
Abstract

Cited by 273 (15 self)
 Add to MetaCart
A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative YangMills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an indepth study of the gauge group of noncommutative YangMills theory. Some of the more mathematical ideas and
Gravity coupled with matter and the foundation of non commutative geometry
, 1996
"... We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element ds. Its unitary representations correspond to Riemannian metrics and Spin structure while ds is the Dirac propagator ds = ×— × = D −1 where D i ..."
Abstract

Cited by 264 (14 self)
 Add to MetaCart
We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element ds. Its unitary representations correspond to Riemannian metrics and Spin structure while ds is the Dirac propagator ds = ×— × = D −1 where D is the Dirac operator. We extend these simple relations to the non commutative case using Tomita’s involution J. We then write a spectral action, the trace of a function of the length element in Planck units, which when applied to the non commutative geometry of the Standard Model will be shown (in a joint work with Ali Chamseddine) to give the SM Lagrangian coupled to gravity. The internal fluctuations of the non commutative geometry are trivial in the commutative case but yield the full bosonic sector of SM with all correct quantum numbers in the slightly non commutative case. The group of local gauge transformations appears spontaneously as a normal subgroup of the diffeomorphism group.
Noncommutative manifolds, the instanton algebra and isospectral deformations
 Comm. Math. Phys
"... We give new examples of noncommutative manifolds that are less standard than the NCtorus or Moyal deformations of R n. They arise naturally from basic considerations of noncommutative differential topology and have nontrivial global features. The new examples include the instanton algebra and the ..."
Abstract

Cited by 127 (19 self)
 Add to MetaCart
We give new examples of noncommutative manifolds that are less standard than the NCtorus or Moyal deformations of R n. They arise naturally from basic considerations of noncommutative differential topology and have nontrivial global features. The new examples include the instanton algebra and the NC4spheres S4 θ. We construct the noncommutative algebras A = C ∞ (S4 θ) of functions on NCspheres as solutions to the vanishing, chj(e) = 0,j < 2, of the Chern character in the cyclic homology of A of an idempotent e ∈ M4(A), e2 = e, e = e ∗. We describe the universal noncommutative space obtained from this equation as a noncommutative Grassmanian as well as the corresponding notion of admissible morphisms. This space Gr contains the suspension of a NC3sphere intimately related to quantum group deformations SUq(2) of SU(2) but for unusual values (complex values of modulus one) of the parameter q of qanalogues, q = exp(2πiθ). We then construct the noncommutative geometry of S4 θ as given by a spectral triple (A, H,D) and check all axioms of noncommutative manifolds. In a previous paper it was shown that for any Riemannian metric gµν on S4 whose volume form √ g d4x is the same as the one for the round metric, the corresponding Dirac operator gives a solution to the following quartic equation, e − 1
Noncommutative FiniteDimensional Manifolds  I. SPHERICAL MANIFOLDS AND RELATED EXAMPLES
, 2001
"... We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 d ..."
Abstract

Cited by 89 (12 self)
 Add to MetaCart
We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 defined by basic Ktheoretic equations. We find a 3parameter family of deformations of the standard 3sphere S 3 and a corresponding 3parameter deformation of the 4dimensional Euclidean space R 4. For generic values of the deformation parameters we show that the obtained algebras of polynomials on the deformed R 4 u are isomorphic to the algebras introduced by Sklyanin in connection with the YangBaxter equation. Special values of the deformation parameters do not give rise to Sklyanin algebras and we extract a subclass, the θdeformations, which we generalize in any dimension and various contexts, and study in some details. Here, and
Noncommutative geometry, quantum fields and motives
 Colloquium Publications, Vol.55, American Mathematical Society
, 2008
"... ..."
GromovHausdorff distance for quantum metric spaces
 Mem. Amer. Math. Soc
"... Abstract. By a quantum metric space we mean a C ∗algebra (or more generally an orderunit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov–Hausdorff distanc ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
Abstract. By a quantum metric space we mean a C ∗algebra (or more generally an orderunit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov–Hausdorff distance. We show that the basic theorems of the classical theory have natural quantum analogues. Our main example involves the quantum tori, Aθ. We show, for consistently defined “metrics”, that if a sequence {θn} of parameters converges to a parameter θ, then the sequence {Aθn} of quantum tori converges in quantum Gromov–Hausdorff distance to Aθ. 1.
Discrete Spectral Triples and Their Symmetries
 J. Math. Phys
, 1996
"... We classify 0dimensional spectral triples over complex and real algebras and provide some general statements about their di#erential structure. We investigate also whether such spectral triples admit a symmetry arising from the Hopf algebra structure of the finite algebra. We discuss examples of co ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
We classify 0dimensional spectral triples over complex and real algebras and provide some general statements about their di#erential structure. We investigate also whether such spectral triples admit a symmetry arising from the Hopf algebra structure of the finite algebra. We discuss examples of commutative algebras and group algebras. PACS: 02.40.k, 02.90.+p, 12.10.g # email:paschke@dipmza.physik.unimainz.de + email:sitarz@higgs.physik.unimainz.de 1 1