Results 1  10
of
236
Quantum field theory on noncommutative spaces
"... A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommuta ..."
Abstract

Cited by 396 (26 self)
 Add to MetaCart
A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative YangMills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an indepth study of the gauge group of noncommutative YangMills theory. Some of the more mathematical ideas and
Gravity coupled with matter and the foundation of non commutative geometry
, 1996
"... We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element ds. Its unitary representations correspond to Riemannian metrics and Spin structure while ds is the Dirac propagator ds = ×— × = D −1 where D i ..."
Abstract

Cited by 347 (18 self)
 Add to MetaCart
We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element ds. Its unitary representations correspond to Riemannian metrics and Spin structure while ds is the Dirac propagator ds = ×— × = D −1 where D is the Dirac operator. We extend these simple relations to the non commutative case using Tomita’s involution J. We then write a spectral action, the trace of a function of the length element in Planck units, which when applied to the non commutative geometry of the Standard Model will be shown (in a joint work with Ali Chamseddine) to give the SM Lagrangian coupled to gravity. The internal fluctuations of the non commutative geometry are trivial in the commutative case but yield the full bosonic sector of SM with all correct quantum numbers in the slightly non commutative case. The group of local gauge transformations appears spontaneously as a normal subgroup of the diffeomorphism group.
Noncommutative geometry, quantum fields and motives
 Colloquium Publications, Vol.55, American Mathematical Society
, 2008
"... ..."
(Show Context)
Noncommutative FiniteDimensional Manifolds  I. SPHERICAL MANIFOLDS AND RELATED EXAMPLES
, 2001
"... We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 d ..."
Abstract

Cited by 123 (15 self)
 Add to MetaCart
We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 defined by basic Ktheoretic equations. We find a 3parameter family of deformations of the standard 3sphere S 3 and a corresponding 3parameter deformation of the 4dimensional Euclidean space R 4. For generic values of the deformation parameters we show that the obtained algebras of polynomials on the deformed R 4 u are isomorphic to the algebras introduced by Sklyanin in connection with the YangBaxter equation. Special values of the deformation parameters do not give rise to Sklyanin algebras and we extract a subclass, the θdeformations, which we generalize in any dimension and various contexts, and study in some details. Here, and
From Physics to Number theory via Noncommutative Geometry, II  Chapter 2: Renormalization, The RiemannHilbert correspondence, and . . .
"... ..."
(Show Context)
Lectures on graded differential algebras and noncommutative geometry
, 1999
"... These notes contain a survey of some aspects of the theory of graded differential algebras and of noncommutative differential calculi as well as of some applications connected with physics. They also give a description of several new developments. ..."
Abstract

Cited by 48 (5 self)
 Add to MetaCart
(Show Context)
These notes contain a survey of some aspects of the theory of graded differential algebras and of noncommutative differential calculi as well as of some applications connected with physics. They also give a description of several new developments.
Noncommutative geometry and the standard model with neutrino mixing,” arXiv:hepth/0608226
"... Abstract. We show that allowing the metric dimension of a space to be independent of its KOdimension and turning the finite noncommutative geometry F – whose product with classical 4dimensional spacetime gives the standard model coupled with gravity–into a space of KOdimension 6 by changing the ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We show that allowing the metric dimension of a space to be independent of its KOdimension and turning the finite noncommutative geometry F – whose product with classical 4dimensional spacetime gives the standard model coupled with gravity–into a space of KOdimension 6 by changing the grading on the antiparticle sector into its opposite, allows to solve three problems of the previous noncommutative geometry interpretation of the standard model of particle physics: The finite geometry F is no longer put in “by hand ” but a conceptual understanding of its structure and a classification of its metrics is given. The fermion doubling problem in the fermionic part of the action is resolved. The spectral action of our joint work with Chamseddine now automatically generates the full standard model coupled with gravity with neutrino mixing and seesaw mechanism for neutrino masses. The predictions of the Weinberg angle and the Higgs scattering parameter at unification scale are the same as in our joint work but we also find a mass relation (to be imposed at unification scale). 1.
The spectral action for Moyal planes
 J. Math. Phys
"... Extending a result of D. V. Vassilevich [50], we obtain the asymptotic expansion for the trace of a spatially regularized heat operator LΘ (f)e−t△Θ, where △Θ is a generalized Laplacian defined with Moyal products and LΘ (f) is Moyal left multiplication. The Moyal planes corresponding to any skewsymm ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
(Show Context)
Extending a result of D. V. Vassilevich [50], we obtain the asymptotic expansion for the trace of a spatially regularized heat operator LΘ (f)e−t△Θ, where △Θ is a generalized Laplacian defined with Moyal products and LΘ (f) is Moyal left multiplication. The Moyal planes corresponding to any skewsymmetric matrix Θ being spectral triples [24], the spectral action introduced in noncommutative geometry by A. Chamseddine and A. Connes [6] is computed. This result generalizes the ConnesLott action [15] previously computed by Gayral [23] for symplectic Θ.