Results 1 
2 of
2
Model selection and accounting for model uncertainty in graphical models using Occam's window
, 1993
"... We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection o ..."
Abstract

Cited by 293 (46 self)
 Add to MetaCart
We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection of a single model; inference is then conditional on the selected model. The sampling properties of such a strategy are complex, and the failure to take account of model uncertainty leads to underestimation of uncertainty about quantities of interest. In principle, a panacea is provided by the standard Bayesian formalism which averages the posterior distributions of the quantity of interest under each of the models, weighted by their posterior model probabilities. Furthermore, this approach is optimal in the sense of maximising predictive ability. However, this has not been used in practice because computing the posterior model probabilities is hard and the number of models is very large (often greater than 1011). We argue that the standard Bayesian formalism is unsatisfactory and we propose an alternative Bayesian approach that, we contend, takes full account of the true model uncertainty byaveraging overamuch smaller set of models. An efficient search algorithm is developed for nding these models. We consider two classes of graphical models that arise in expert systems: the recursive causal models and the decomposable
Bayes Factors and BIC: Comment on Weakliem
, 1998
"... Weakliem agrees that Bayes factors are useful for model selection and hypothesis testing. He reminds us that the simple and convenient BIC approximation corresponds most closely to one particular prior on the parameter space, the unit information prior, and points out that researchers may have diffe ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Weakliem agrees that Bayes factors are useful for model selection and hypothesis testing. He reminds us that the simple and convenient BIC approximation corresponds most closely to one particular prior on the parameter space, the unit information prior, and points out that researchers may have different prior information or opinions. Clearly a prior that represents the available information should be used, although the unit information prior often seems reasonable in the absence of strong prior information. It seems that, among the Bayes factors likely to be used in practice, BIC is conservative in the sense of tending to provide less evidence for additional parameters or "effects". Thus if a Bayes factor based on additional prior information favors an effect, but BIC does not, the prior information is playing a crucial role and this should be made clear when the research is reported. BIC may well have a role as a baseline reference analysis to be provided in routine reporting of research results, perhaps along with Bayes factors based on other priors. In Weakliem's 2 x 2 table examples, BIC and Bayes factors based on Weakliem's preferred priors lead to similar substantive conclusions, but both differ from those based on P values. When there is additional prior information, the technology now exists to express it as