Results 1  10
of
20
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 162 (28 self)
 Add to MetaCart
We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms, the problem is usually referred to as multiple kernel learning and is commonly used for learning from heterogeneous data sources and for non linear variable selection. Using tools from functional analysis, and in particular covariance operators, we extend the consistency results to this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
Exploring large feature spaces with hierarchical MKL
, 2008
"... For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or H ..."
Abstract

Cited by 77 (20 self)
 Add to MetaCart
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsityinducing norms such as the ℓ 1norm or the block ℓ 1norm. We assume that the kernel decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository show that efficiently exploring the large feature space through sparsityinducing norms leads to stateoftheart predictive performance. 1
Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations and algorithms
 Computational Morphology
, 1988
"... Regularization by the sum of singular values, also referred to as the trace norm, is a popular technique for estimating low rank rectangular matrices. In this paper, we extend some of the consistency results of the Lasso to provide necessary and sufficient conditions for rank consistency of trace no ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
Regularization by the sum of singular values, also referred to as the trace norm, is a popular technique for estimating low rank rectangular matrices. In this paper, we extend some of the consistency results of the Lasso to provide necessary and sufficient conditions for rank consistency of trace norm minimization with the square loss. We also provide an adaptive version that is rank consistent even when the necessary condition for the non adaptive version is not fulfilled. 1.
Optimal Solutions for Sparse Principal Component Analysis
"... Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applica ..."
Abstract

Cited by 41 (8 self)
 Add to MetaCart
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applications in machine learning and engineering. We formulate a new semidefinite relaxation to this problem and derive a greedy algorithm that computes a full set of good solutions for all target numbers of non zero coefficients, with total complexity O(n 3), where n is the number of variables. We then use the same relaxation to derive sufficient conditions for global optimality of a solution, which can be tested in O(n 3) per pattern. We discuss applications in subset selection and sparse recovery and show on artificial examples and biological data that our algorithm does provide globally optimal solutions in many cases.
Bolasso: model consistent lasso estimation through the bootstrap
 In Proceedings of the Twentyfifth International Conference on Machine Learning (ICML
, 2008
"... We consider the leastsquare linear regression problem with regularization by the ℓ1norm, a problem usually referred to as the Lasso. In this paper, we present a detailed asymptotic analysis of model consistency of the Lasso. For various decays of the regularization parameter, we compute asymptotic ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
We consider the leastsquare linear regression problem with regularization by the ℓ1norm, a problem usually referred to as the Lasso. In this paper, we present a detailed asymptotic analysis of model consistency of the Lasso. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection (i.e., variable selection). For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection algorithm, referred to as the Bolasso, is compared favorably to other linear regression methods on synthetic data and datasets from the UCI machine learning repository. 1.
Selfconcordant analysis for logistic regression
"... Most of the nonasymptotic theoretical work in regression is carried out for the square loss, where estimators can be obtained through closedform expressions. In this paper, we use and extend tools from the convex optimization literature, namely selfconcordant functions, to provide simple extensio ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
Most of the nonasymptotic theoretical work in regression is carried out for the square loss, where estimators can be obtained through closedform expressions. In this paper, we use and extend tools from the convex optimization literature, namely selfconcordant functions, to provide simple extensions of theoretical results for the square loss to the logistic loss. We apply the extension techniques to logistic regression with regularization by the ℓ2norm and regularization by the ℓ1norm, showing that new results for binary classification through logistic regression can be easily derived from corresponding results for leastsquares regression. 1
HighDimensional NonLinear Variable Selection through Hierarchical Kernel Learning
, 2009
"... We consider the problem of highdimensional nonlinear variable selection for supervised learning. Our approach is based on performing linear selection among exponentially many appropriately defined positive definite kernels that characterize nonlinear interactions between the original variables. T ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
We consider the problem of highdimensional nonlinear variable selection for supervised learning. Our approach is based on performing linear selection among exponentially many appropriately defined positive definite kernels that characterize nonlinear interactions between the original variables. To select efficiently from these many kernels, we use the natural hierarchical structure of the problem to extend the multiple kernel learning framework to kernels that can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a graphadapted sparsityinducing norm, in polynomial time in the number of selected kernels. Moreover, we study the consistency of variable selection in highdimensional settings, showing that under certain assumptions, our regularization framework allows a number of irrelevant variables which is exponential in the number of observations. Our simulations on synthetic datasets and datasets from the UCI repository show stateoftheart predictive performance for nonlinear regression problems. 1
Structured Sparsity through Convex Optimization
"... Abstract. Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. While naturally cast as a combinatorial optimization problem, variable or feature selection admits a convex relaxation through the regularization by the ℓ1norm. In this paper, we cons ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. While naturally cast as a combinatorial optimization problem, variable or feature selection admits a convex relaxation through the regularization by the ℓ1norm. In this paper, we consider situations where we are not only interested in sparsity, but where some structural prior knowledge is available as well. We show that the ℓ1norm can then be extended to structured norms built on either disjoint or overlapping groups of variables, leading to a flexible framework that can deal with various structures. We present applications to unsupervised learning, for structured sparse principal component analysis and hierarchical dictionary learning, and to supervised learning in the context of nonlinear variable selection. Key words and phrases: Sparsity, convex optimization. 1.
ModelConsistent Sparse Estimation through the Bootstrap
, 2009
"... We consider the leastsquare linear regression problem with regularization by the ℓ 1norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in lowdimensional settings. For various decays of the regularizati ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We consider the leastsquare linear regression problem with regularization by the ℓ 1norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in lowdimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to highdimensional settings by a provably consistent twostep procedure. 1
2. Function space / normRegularizations
, 2009
"... • Minimize with respect to function f: X → Y: n∑ ℓ(yi,f(xi)) + i=1 Error on data λ ..."
Abstract
 Add to MetaCart
• Minimize with respect to function f: X → Y: n∑ ℓ(yi,f(xi)) + i=1 Error on data λ