Results 1  10
of
62
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 345 (6 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 305 (40 self)
 Add to MetaCart
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and highspeed analogtodigital converters, increasing the sampling rate or density beyond the current stateoftheart is very expensive. In this lecture, we will learn about a new technique that tackles these issues using compressive sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a more general linear measurement scheme coupled with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. 2
Iterative hard thresholding for compressed sensing
 Appl. Comp. Harm. Anal
"... Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery probl ..."
Abstract

Cited by 142 (14 self)
 Add to MetaCart
Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery problem. We show that the algorithm has the following properties (made more precise in the main text of the paper) • It gives nearoptimal error guarantees. • It is robust to observation noise. • It succeeds with a minimum number of observations. • It can be used with any sampling operator for which the operator and its adjoint can be computed. • The memory requirement is linear in the problem size. Preprint submitted to Elsevier 28 January 2009 • Its computational complexity per iteration is of the same order as the application of the measurement operator or its adjoint. • It requires a fixed number of iterations depending only on the logarithm of a form of signal to noise ratio of the signal. • Its performance guarantees are uniform in that they only depend on properties of the sampling operator and signal sparsity.
Distributed compressed sensing
, 2005
"... Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algori ..."
Abstract

Cited by 84 (21 self)
 Add to MetaCart
Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multisignal ensembles that exploit both intra and intersignal correlation structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal ensemble. We study in detail three simple models for jointly sparse signals, propose algorithms for joint recovery of multiple signals from incoherent projections, and characterize theoretically and empirically the number of measurements per sensor required for accurate reconstruction. We establish a parallel with the SlepianWolf theorem from information theory and establish upper and lower bounds on the measurement rates required for encoding jointly sparse signals. In two of our three models, the results are asymptotically bestpossible, meaning that both the upper and lower bounds match the performance of our practical algorithms. Moreover, simulations indicate that the asymptotics take effect with just a moderate number of signals. In some sense DCS is a framework for distributed compression of sources with memory, which has remained a challenging problem for some time. DCS is immediately applicable to a range of problems in sensor networks and arrays.
COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY
"... Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constru ..."
Abstract

Cited by 73 (12 self)
 Add to MetaCart
Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ and a combinatorial decoding algorithm to match. We present a unified approach to these two classes of sparse signal recovery algorithms. The unifying elements are the adjacency matrices of highquality unbalanced expanders. We generalize the notion of Restricted Isometry Property (RIP), crucial to compressed sensing results for signal recovery, from the Euclidean norm to the ℓp norm for p ≈ 1, and then show that unbalanced expanders are essentially equivalent to RIPp matrices. From known deterministic constructions for such matrices, we obtain new deterministic measurement matrix constructions and algorithms for signal recovery which, compared to previous deterministic algorithms, are superior in either the number of measurements or in noise tolerance. 1.
Computational methods for sparse solution of linear inverse problems
, 2009
"... The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, ..."
Abstract

Cited by 60 (0 self)
 Add to MetaCart
The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a wealth of applications.
Bayesian Compressed Sensing via Belief Propagation
, 2010
"... Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can comple ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can complement conventional CS methods based on linear programming or greedy algorithms. We perform asymptotically optimal Bayesian inference using belief propagation (BP) decoding, which represents the CS encoding matrix as a graphical model. Fast computation is obtained by reducing the size of the graphical model with sparse encoding matrices. To decode a length signal containing large coefficients, our CSBP decoding algorithm uses ( log ()) measurements and ( log 2 ()) computation. Finally, although we focus on a twostate mixture Gaussian model, CSBP is easily adapted to other signal models.
SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE MEASUREMENTS VIA REGULARIZED ORTHOGONAL MATCHING PURSUIT
"... Abstract. We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R d from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to clo ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
Abstract. We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R d from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation of the greedy methods with the strong guarantees of the convex programming methods. For any measurement matrix Φ that satisfies a Uniform Uncertainty Principle, ROMP recovers a signal v with O(n) nonzeros from its inaccurate measurements x in at most n iterations, where each iteration amounts to solving a Least Squares Problem. The noise level of the recovery is proportional to √ log n�e�2. In particular, if the error term e vanishes the reconstruction is exact. This stability result extends naturally to the very accurate recovery of approximately sparse signals. 1.
Admira: Atomic decomposition for minimum rank approximation
, 905
"... We address the inverse problem that arises in compressed sensing of a lowrank matrix. Our approach is to pose the inverse problem as an approximation problem with a specified target rank of the solution. A simple search over the target rank then provides the minimum rank solution satisfying a presc ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
We address the inverse problem that arises in compressed sensing of a lowrank matrix. Our approach is to pose the inverse problem as an approximation problem with a specified target rank of the solution. A simple search over the target rank then provides the minimum rank solution satisfying a prescribed data approximation bound. We propose an atomic decomposition that provides an analogy between parsimonious representations of a sparse vector and a lowrank matrix. Efficient greedy algorithms to solve the inverse problem for the vector case are extended to the matrix case through this atomic decomposition. In particular, we propose an efficient and guaranteed algorithm named ADMiRA that extends CoSaMP, its analogue for the vector case. The performance guarantee is given in terms of the rankrestricted isometry property and bounds both the number of iterations and the error in the approximate solution for the general case where the solution is approximately lowrank and the measurements are noisy. With a sparse measurement operator such as the one arising in the matrix completion problem, the computation in ADMiRA is linear in the number of measurements. The numerical experiments for the matrix completion problem show that, although the measurement operator in this case does not satisfy the rankrestricted isometry property, ADMiRA is a competitive algorithm for matrix completion.
Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property
"... We present an algorithm for finding an ssparse vector x that minimizes the squareerror ‖y − Φx‖2 where Φ satisfies the restricted isometry property (RIP), with isometric constant δ2s < 1/3. Our algorithm, called GraDeS (Gradient Descent with Sparsification) iteratively updates x as: x ← Hs x + 1 γ ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
We present an algorithm for finding an ssparse vector x that minimizes the squareerror ‖y − Φx‖2 where Φ satisfies the restricted isometry property (RIP), with isometric constant δ2s < 1/3. Our algorithm, called GraDeS (Gradient Descent with Sparsification) iteratively updates x as: x ← Hs x + 1 γ · Φ ⊤) (y − Φx) where γ> 1 and Hs sets all but s largest magnitude coordinates to zero. GraDeS converges to the correct solution in constant number of iterations. The condition δ2s < 1/3 is most general for which a nearlinear time algorithm is known. In comparison, the best condition under which a polynomialtime algorithm is known, is δ2s < √ 2 − 1.