Results 1  10
of
199
Predictive Models for the Breeder Genetic Algorithm  I. Continuous Parameter Optimization
 EVOLUTIONARY COMPUTATION
, 1993
"... In this paper a new genetic algorithm called the Breeder Genetic Algorithm (BGA) is introduced. The BGA is based on artificial selection similar to that used by human breeders. A predictive model for the BGA is presented which is derived from quantitative genetics. The model is used to predict t ..."
Abstract

Cited by 342 (25 self)
 Add to MetaCart
In this paper a new genetic algorithm called the Breeder Genetic Algorithm (BGA) is introduced. The BGA is based on artificial selection similar to that used by human breeders. A predictive model for the BGA is presented which is derived from quantitative genetics. The model is used to predict the behavior of the BGA for simple test functions. Different mutation schemes are compared by computing the expected progress to the solution. The numerical performance of the BGA is demonstrated on a test suite of multimodal functions. The number of function evaluations needed to locate the optimum scales only as n ln(n) where n is the number of parameters. Results up to n = 1000 are reported.
The GENITOR Algorithm and Selection Pressure: Why RankBased Allocation of Reproductive Trials is Best
 Proceedings of the Third International Conference on Genetic Algorithms
, 1989
"... This paper reports work done over the past three years using rankbased allocation of reproductive trials. New evidence and arguments are presented which suggest that allocating reproductive trials according to rank is superior to fitness proportionate reproduction. Ranking can not only be used to s ..."
Abstract

Cited by 329 (12 self)
 Add to MetaCart
This paper reports work done over the past three years using rankbased allocation of reproductive trials. New evidence and arguments are presented which suggest that allocating reproductive trials according to rank is superior to fitness proportionate reproduction. Ranking can not only be used to slow search speed, but also to increase search speed when appropriate. Furthermore, the use of ranking provides a degree of control over selective pressure that is not possible with fitness proportionate reproduction. The use of rankbased allocation of reproductive trials is discussed in the context of 1) Holland's schema theorem, 2) DeJong's standard test suite, and 3) a set of neural net optimization problems that are larger than the problems in the standard test suite. The GENITOR algorithm is also discussed; this algorithm is specifically designed to allocate reproductive trials according to rank.
PopulationBased Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
, 1994
"... Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within th ..."
Abstract

Cited by 298 (11 self)
 Add to MetaCart
Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within the framework of competitive learning. This new perspective reveals a number of different possibilities for performance improvements. This paper explores populationbased incremental learning (PBIL), a method of combining the mechanisms of a generational genetic algorithm with simple competitive learning. The combination of these two methods reveals a tool which is far simpler than a GA, and which outperforms a GA on large set of optimization problems in terms of both speed and accuracy. This paper presents an empirical analysis of where the proposed technique will outperform genetic algorithms, and describes a class of problems in which a genetic algorithm may be able to perform better. Extensions to this algorithm are discussed and analyzed. PBIL and extensions are compared with a standard GA on twelve problems, including standard numerical optimization functions, traditional GA test suite problems, and NPComplete problems.
A Genetic Algorithm Tutorial
 Statistics and Computing
, 1994
"... This tutorial covers the canonical genetic algorithm as well as more experimental forms of genetic algorithms, including parallel island models and parallel cellular genetic algorithms. The tutorial also illustrates genetic search byhyperplane sampling. The theoretical foundations of genetic algorit ..."
Abstract

Cited by 231 (5 self)
 Add to MetaCart
This tutorial covers the canonical genetic algorithm as well as more experimental forms of genetic algorithms, including parallel island models and parallel cellular genetic algorithms. The tutorial also illustrates genetic search byhyperplane sampling. The theoretical foundations of genetic algorithms are reviewed, include the schema theorem as well as recently developed exact models of the canonical genetic algorithm.
Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms
 Proceedings of the Sixth International Conference on Genetic Algorithms
, 1995
"... A measure of search difficulty, fitness distance correlation (FDC), is introduced and examined in relation to genetic algorithm (GA) performance. In many cases, this correlation can be used to predict the performance of a GA on problems with known global maxima. It correctly classifies easy deceptiv ..."
Abstract

Cited by 204 (5 self)
 Add to MetaCart
A measure of search difficulty, fitness distance correlation (FDC), is introduced and examined in relation to genetic algorithm (GA) performance. In many cases, this correlation can be used to predict the performance of a GA on problems with known global maxima. It correctly classifies easy deceptive problems as easy and difficult nondeceptive problems as difficult, indicates when Gray coding will prove better than binary coding, and is consistent with the surprises encountered when GAs were used on the Tanese and royal road functions. The FDC measure is a consequence of an investigation into the connection between GAs and heuristic search. 1 INTRODUCTION A correspondence between evolutionary algorithms and heuristic state space search is developed in (Jones, 1995b). This is based on a model of fitness landscapes as directed, labeled graphs that are closely related to the state spaces employed in heuristic search. We examine one aspect of this correspondence, the relationship between...
On the Analysis of the (1+1) Evolutionary Algorithm
 THEORETICAL COMPUTER SCIENCE
, 2002
"... Many experimental results are reported on all types of Evolutionary Algorithms but only few results have been proved. A step towards a theory on Evolutionary Algorithms, in particular, the socalled (1 + 1) Evolutionary Algorithm, is performed. Linear functions are proved to be optimized in expected ..."
Abstract

Cited by 184 (41 self)
 Add to MetaCart
Many experimental results are reported on all types of Evolutionary Algorithms but only few results have been proved. A step towards a theory on Evolutionary Algorithms, in particular, the socalled (1 + 1) Evolutionary Algorithm, is performed. Linear functions are proved to be optimized in expected time O(n ln n) but only mutation rates of size #(1/n) can ensure this behavior. For some polynomial of degree 2 the optimization needs exponential time. The same is proved for a unimodal function. Both results were not expected by several other authors. Finally, a hierarchy result is proved. Moreover, methods are presented to analyze the behavior of the (1 + 1) Evolutionary Algorithm.
Evolving Networks: Using the Genetic Algorithm with Connectionist Learning
 In
, 1990
"... It is appealing to consider hybrids of neuralnetwork learning algorithms with evolutionary search procedures, simply because Nature has so successfully done so. In fact, computational models of learning and evolution offer theoretical biology new tools for addressing questions about Nature that hav ..."
Abstract

Cited by 179 (2 self)
 Add to MetaCart
It is appealing to consider hybrids of neuralnetwork learning algorithms with evolutionary search procedures, simply because Nature has so successfully done so. In fact, computational models of learning and evolution offer theoretical biology new tools for addressing questions about Nature that have dogged that field since Darwin [Belew, 1990]. The concern of this paper, however, is strictly artificial: Can hybrids of connectionist learning algorithms and genetic algorithms produce more efficient and effective algorithms than either technique applied in isolation? The paper begins with a survey of recent work (by us and others) that combines Holland's Genetic Algorithm (GA) with connectionist techniques and delineates some of the basic design problems these hybrids share. This analysis suggests the dangers of overly literal representations of the network on the genome (e.g., encoding each weight explicitly). A preliminary set of experiments that use the GA to find unusual but successf...
A Review of Evolutionary Artificial Neural Networks
, 1993
"... Research on potential interactions between connectionist learning systems, i.e., artificial neural networks (ANNs), and evolutionary search procedures, like genetic algorithms (GAs), has attracted a lot of attention recently. Evolutionary ANNs (EANNs) can be considered as the combination of ANNs and ..."
Abstract

Cited by 154 (23 self)
 Add to MetaCart
Research on potential interactions between connectionist learning systems, i.e., artificial neural networks (ANNs), and evolutionary search procedures, like genetic algorithms (GAs), has attracted a lot of attention recently. Evolutionary ANNs (EANNs) can be considered as the combination of ANNs and evolutionary search procedures. This paper first distinguishes among three kinds of evolution in EANNs, i.e., the evolution of connection weights, of architectures and of learning rules. Then it reviews each kind of evolution in detail and analyses critical issues related to different evolutions. The review shows that although a lot of work has been done on the evolution of connection weights and of architectures, few attempts have been made to understand the evolution of learning rules. Interactions among different evolutions are seldom mentioned in current research. However, the evolution of learning rules and its interactions with other kinds of evolution play a vital role in EANNs. As t...
Evolution in time and space  the parallel genetic algorithm
 FOUNDATIONS OF GENETIC ALGORITHMS
, 1991
"... The parallel genetic algorithm (PGA) uses two major modifications compared to the genetic algorithm. Firstly, selection for mating is distributed. Individuals live in a 2D world. Selection of a mate is done by each individual independently in its neighborhood. Secondly, each individual may improve ..."
Abstract

Cited by 108 (13 self)
 Add to MetaCart
The parallel genetic algorithm (PGA) uses two major modifications compared to the genetic algorithm. Firstly, selection for mating is distributed. Individuals live in a 2D world. Selection of a mate is done by each individual independently in its neighborhood. Secondly, each individual may improve its fitness during its lifetime by e.g. local hillclimbing. The PGA is totally asynchronous, running with maximal efficiency on MIMD parallel computers. The search strategy of the PGA is based on a small number of active and intelligent individuals, whereas a GA uses a large population of passive individuals. We will investigate the PGA with deceptive problems and the traveling salesman problem. We outline why and when the PGA is succesful. Abstractly, a PGA is a parallel search with information exchange between the individuals. If we represent the optimization problem as a fitness landscape in a certain configuration space, we see, that a PGA tries to jump from two local minima to a third, still better local minima, by using the crossover operator. This jump is (probabilistically) successful, if the fitness landscape has a certain correlation. We show the correlation for the traveling salesman problem by a configuration space analysis. The PGA explores implicitly the above correlation.