Results 1  10
of
16
Ultrametric Semantics of Reactive Programs
"... Abstract—We describe a denotational model of higherorder functional reactive programming using ultrametric spaces and nonexpansive maps, which provide a natural Cartesian closed generalization of causal stream functions and guarded recursive definitions. We define a type theory corresponding to thi ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abstract—We describe a denotational model of higherorder functional reactive programming using ultrametric spaces and nonexpansive maps, which provide a natural Cartesian closed generalization of causal stream functions and guarded recursive definitions. We define a type theory corresponding to this semantics and show that it satisfies normalization. Finally, we show how reactive programs written in this language may be implemented efficiently using an imperatively updated dataflow graph, and give a separation logic proof that this lowlevel implementation is correct with respect to the highlevel semantics. I.
Efficient Intuitionistic Theorem Proving with the Polarized Inverse Method
"... Abstract. The inverse method is a generic proof search procedure applicable to nonclassical logics satisfying cut elimination and the subformula property. In this paper we describe a general architecture and several highlevel optimizations that enable its efficient implementation. Some of these re ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. The inverse method is a generic proof search procedure applicable to nonclassical logics satisfying cut elimination and the subformula property. In this paper we describe a general architecture and several highlevel optimizations that enable its efficient implementation. Some of these rely on logicspecific properties, such as polarization and focusing, which have been shown to hold in a wide range of nonclassical logics. Others, such as rule subsumption and recursive backward subsumption apply in general. We empirically evaluate our techniques on firstorder intuitionistic logic with our implementation Imogen and demonstrate a substantial improvement over all other existing intuitionistic theorem provers on problems from the ILTP problem library. 1
Dependently Typed Programming with DomainSpecific Logics
 SUBMITTED TO POPL ’09
, 2008
"... We define a dependent programming language in which programmers can define and compute with domainspecific logics, such as an accesscontrol logic that statically prevents unauthorized access to controlled resources. Our language permits programmers to define logics using the LF logical framework, ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We define a dependent programming language in which programmers can define and compute with domainspecific logics, such as an accesscontrol logic that statically prevents unauthorized access to controlled resources. Our language permits programmers to define logics using the LF logical framework, whose notion of binding and scope facilitates the representation of the consequence relation of a logic, and to compute with logics by writing functional programs over LF terms. These functional programs can be used to compute values at runtime, and also to compute types at compiletime. In previous work, we studied a simplytyped framework for representing and computing with variable binding [LICS 2008]. In this paper, we generalize our previous type theory to account for dependently typed inference rules, which are necessary to adequately represent domainspecific logics, and we present examples of using our type theory for certified software and mechanized metatheory.
Positively Dependent Types
 SUBMITTED TO PLPV ’09
, 2008
"... This paper is part of a line of work on using the logical techniques of polarity and focusing to design a dependent programming language, with particular emphasis on programming with deductive systems such as programming languages and proof theories. Polarity emphasizes the distinction between posit ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
This paper is part of a line of work on using the logical techniques of polarity and focusing to design a dependent programming language, with particular emphasis on programming with deductive systems such as programming languages and proof theories. Polarity emphasizes the distinction between positive types, which classify data, and negative types, which classify computation. In previous work, we showed how to use Zeilberger’s higherorder formulation of focusing to integrate a positive function space for representing variable binding, an essential tool for specifying logical systems, with a standard negative computational function space. However, our previous work considers only a simplytyped language. The central technical contribution of the present paper is to extend higherorder focusing with a form of dependency that we call positively dependent types: We allow dependency on positive data, but not negative computation, and we present the syntax of dependent pair and function types using an iterated inductive definition, mapping positive data to types, which gives an account of typelevel computation. We construct our language inside the dependently typed programming language Agda 2, making essential use of coinductive types and inductionrecursion.
Principles of Constructive Provability Logic
, 2010
"... We present a novel formulation of the modal logic CPL, a constructive logic of provability that is closely connected to the GödelLöb logic of provability. Our logical formulation allows modal operators to talk about both provability and nonprovability of propositions at reachable worlds. We are in ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We present a novel formulation of the modal logic CPL, a constructive logic of provability that is closely connected to the GödelLöb logic of provability. Our logical formulation allows modal operators to talk about both provability and nonprovability of propositions at reachable worlds. We are interested in the applications of CPL to logic programming; however, this report focuses on the presentation of a minimal fragment (in the sense of minimal logic) of CPL and on the formalization of minimal CPL and its metatheory in the Agda programming language. We present both a natural deduction system and a sequent calculus for minimal CPL and show that the presentations are equivalent.
Polarity and the Logic of Delimited Continuations
"... Abstract—Polarized logic is the logic of values and continuations, and their interaction through continuationpassing style. The main limitations of this logic are the limitations of CPS: that continuations cannot be composed, and that programs are fully sequentialized. Delimited control operators w ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract—Polarized logic is the logic of values and continuations, and their interaction through continuationpassing style. The main limitations of this logic are the limitations of CPS: that continuations cannot be composed, and that programs are fully sequentialized. Delimited control operators were invented in response to the limitations of classical continuationpassing. That suggests the question: what is the logic of delimited continuations? We offer a simple account of delimited control, through a natural generalization of the classical notion of polarity. This amounts to breaking the perfect symmetry between positive and negative polarity in the following way: answer types are positive. Despite this asymmetry, we retain all of the classical polarized connectives, and can explain “intuitionistic polarity ” (e.g., in systems like CBPV) as a restriction on the use of connectives, i.e., as a logical fragment. Our analysis complements and generalizes existing accounts of delimited control operators, while giving us a rich logical language through which to understand the interaction of control with monadic effects. I.
Structural focalization
, 2011
"... Focusing, introduced by JeanMarc Andreoli in the context of classical linear logic, defines a normal form for sequent calculus derivations that cuts down on the number of possible derivations by eagerly applying invertible rules and grouping sequences of noninvertible rules. A focused sequent calc ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Focusing, introduced by JeanMarc Andreoli in the context of classical linear logic, defines a normal form for sequent calculus derivations that cuts down on the number of possible derivations by eagerly applying invertible rules and grouping sequences of noninvertible rules. A focused sequent calculus is defined relative to some nonfocused sequent calculus; focalization is the property that every nonfocused derivation can be transformed into a focused derivation. In this paper, we present a focused sequent calculus for polarized propositional intuitionistic logic and prove the focalization property relative to a standard presentation of propositional intuitionistic logic. Compared to existing approaches, the proof is quite concise, depending only on the internal soundness and completeness of the focused logic. In turn, both of these properties can be established (and mechanically verified) by structural induction in the style of Pfenning’s structural cut elimination without the need for any tedious and repetitious invertibility lemmas. The proof of cut admissibility for the focused system, which establishes internal soundness, is not particularly novel. The proof of identity expansion, which establishes internal completeness, is the principal contribution of this work. 1
A neutral presentation of synthetic connectives as proof patterns
"... Abstract. It is wellknown that focusing striates a sequent derivation into phases of like polarity where each phase can be seen as inferring a synthetic connective. The calculus of synthetic connectives can be given a uniform presentation by means of neutral proof patterns, with dual polarised inte ..."
Abstract
 Add to MetaCart
Abstract. It is wellknown that focusing striates a sequent derivation into phases of like polarity where each phase can be seen as inferring a synthetic connective. The calculus of synthetic connectives can be given a uniform presentation by means of neutral proof patterns, with dual polarised interpretations. Permutations of synthetic inferences can be explained by local conditions on proof patterns. Particular focusing systems can be explained as strategic uses of synthetic inferences. 1
Defunctionalizing Focusing Proofs (Or, How Twelf Learned To Stop Worrying And Love The Ωrule)
"... Abstract. In previous work, the author gave a higherorder analysis of focusing proofs (in the sense of Andreoli’s search strategy), with a role for infinitary rules very similar in structure to Buchholz’s Ωrule. Among other benefits, this “patternbased ” description of focusing simplifies the cut ..."
Abstract
 Add to MetaCart
Abstract. In previous work, the author gave a higherorder analysis of focusing proofs (in the sense of Andreoli’s search strategy), with a role for infinitary rules very similar in structure to Buchholz’s Ωrule. Among other benefits, this “patternbased ” description of focusing simplifies the cutelimination procedure, allowing cuts to be eliminated in a connectivegeneric way. However, interpreted literally, it is problematic as a representation technique for proofs, because of the difficulty of inspecting and/or exhaustively searching over these infinite objects. In the spirit of infinitary proof theory, this paper explores a view of patternbased focusing proofs as façons de parler, describing how to compile them down to firstorder derivations through defunctionalization, Reynolds ’ program transformation. Our main result is a representation of patternbased focusing in the Twelf logical framework, whose core type theory is too weak to directly encode infinitary rules—although this weakness directly enables socalled “higherorder abstract syntax ” encodings. By applying the systematic defunctionalization transform, not only do we retain the benefits of the higherorder focusing analysis, but we can also take advantage of HOAS within Twelf, ultimately arriving at a proof representation with surprisingly little bureaucracy. 1