Results 1  10
of
116
SybilLimit: A nearoptimal social network defense against sybil attacks
 2008 [Online]. Available: http://www.comp.nus.edu.sg/~yuhf/sybillimittr.pdf
"... Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil ..."
Abstract

Cited by 126 (7 self)
 Add to MetaCart
Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil attacks is quite challenging. Among the small number of decentralized approaches, our recent SybilGuard protocol leverages a key insight on social networks to bound the number of sybil nodes accepted. Despite its promising direction, SybilGuard can allow a large number of sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fastmixing, which has never been confirmed in the real world. This paper presents the novel SybilLimit protocol that leverages the same insight as SybilGuard, but offers dramatically improved and nearoptimal guarantees. The number of sybil nodes accepted is reduced by a factor of 2 ( p n), or around 200 times in our experiments for a millionnode system. We further prove that SybilLimit’s guarantee is at most a log n factor away from optimal when considering approaches based on fastmixing social networks. Finally, based on three largescale realworld social networks, we provide the first evidence that realworld social networks are indeed fastmixing. This validates the fundamental assumption behind SybilLimit’s and SybilGuard’s approach. Index Terms—Social networks, sybil attack, sybil identities, SybilGuard, SybilLimit. I.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 79 (6 self)
 Add to MetaCart
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
Inferring Networks of Diffusion and Influence
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NPhard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably nearoptimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a coreperiphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
An eventbased framework for characterizing the evolution of interaction graphs
, 2007
"... Interaction graphs are ubiquitous in many fields such as bioinformatics, sociology and physical sciences. There have been many studies in the literature targeted at studying and mining these graphs. However, almost all of them have studied these graphs from a static point of view. The study of the e ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
Interaction graphs are ubiquitous in many fields such as bioinformatics, sociology and physical sciences. There have been many studies in the literature targeted at studying and mining these graphs. However, almost all of them have studied these graphs from a static point of view. The study of the evolution of these graphs over time can provide tremendous insight on the behavior of entities, communities and the flow of information among them. In this work, we present an eventbased characterization of critical behavioral patterns for temporally varying interaction graphs. We use nonoverlapping snapshots of interaction graphs and develop a framework for capturing and identifying interesting events from them. We use these events to characterize complex behavioral patterns of individuals and communities over time. We show how semantic information can be incorporated to reason about communitybehavior events. We also demonstrate the application of behavioral patterns for the purposes of modeling evolution, link prediction and influence maximization. Finally, we present a diffusion model for evolving networks, based on our framework.
Sybilresilient online content voting
 In Proceedings of the 6th Symposium on Networked System Design and Implementation (NSDI
, 2009
"... Obtaining user opinion (using votes) is essential to ranking usergenerated online content. However, any content voting system is susceptible to the Sybil attack where adversaries can outvote real users by creating many Sybil identities. In this paper, we present SumUp, a Sybilresilient vote aggreg ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
Obtaining user opinion (using votes) is essential to ranking usergenerated online content. However, any content voting system is susceptible to the Sybil attack where adversaries can outvote real users by creating many Sybil identities. In this paper, we present SumUp, a Sybilresilient vote aggregation system that leverages the trust network among users to defend against Sybil attacks. SumUp uses the technique of adaptive vote flow aggregation to limit the number of bogus votes cast by adversaries to no more than the number of attack edges in the trust network (with high probability). Using user feedback on votes, SumUp further restricts the voting power of adversaries who continuously misbehave to below the number of their attack edges. Using detailed evaluation of several existing social networks (YouTube, Flickr), we show SumUp’s ability to handle Sybil attacks. By applying SumUp on the voting trace of Digg, a popular news voting site, we have found strong evidence of attack on many articles marked “popular ” by Digg. 1
Weighted Graphs and Disconnected Components Patterns and a Generator
"... The vast majority of earlier work has focused on graphs which are both connected (typically by ignoring all but the giant connected component), and unweighted. Here we study numerous, real, weighted graphs, and report surprising discoveries on the way in which new nodes join and form links in a soci ..."
Abstract

Cited by 31 (18 self)
 Add to MetaCart
The vast majority of earlier work has focused on graphs which are both connected (typically by ignoring all but the giant connected component), and unweighted. Here we study numerous, real, weighted graphs, and report surprising discoveries on the way in which new nodes join and form links in a social network. The motivating questions were the following: How do connected components in a graph form and change over time? What happens after new nodes join a network – how common are repeated edges? We study numerous diverse, real graphs (citation networks, networks in social media, internet traffic, and others); and make the following contributions: (a) we observe that the nongiant connected components seem to stabilize in size, (b) we observe the weights on the edges follow several power laws with surprising exponents, and (c) we propose an intuitive, generative model for graph growth that obeys observed patterns.
Unveiling Core NetworkWide Communication Patterns through Application Traffic Activity Graph Decomposition
"... As Internet communications and applications become more complex, operating, managing and securing networks have become increasingly challenging tasks. There are urgent demands for more sophisticated techniques for understanding and analyzing the behavioral characteristics of network traffic. In this ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
As Internet communications and applications become more complex, operating, managing and securing networks have become increasingly challenging tasks. There are urgent demands for more sophisticated techniques for understanding and analyzing the behavioral characteristics of network traffic. In this paper, we study the network traffic behaviors using traffic activity graphs (TAGs), which capture the interactions among hosts engaging in certain types of communications and their collective behavior. TAGs derived from real network traffic are large, sparse, yet seemingly complex and richly connected, therefore difficult to visualize and comprehend. In order to analyze and characterize these TAGs, we propose a novel statistical traffic graph decomposition technique based on orthogonal nonnegative matrix trifactorization (tNMF) to decompose and extract the core host interaction patterns and other structural properties. Using the real network traffic traces, we demonstrate that our tNMFbased graph decomposition technique produces meaningful and interpretable results. It enables us to characterize and quantify the key structural properties of large and sparse TAGs associated with various applications, and study their formation and evolution.
Suggesting Friends Using the Implicit Social Graph
"... Although users of online communication tools rarely categorize their contacts into groups such as ”family”, ”coworkers”, or ”jogging buddies”, they nonetheless implicitly cluster contacts, by virtue of their interactions with them, forming implicit groups. In this paper, we describe the implicit so ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
Although users of online communication tools rarely categorize their contacts into groups such as ”family”, ”coworkers”, or ”jogging buddies”, they nonetheless implicitly cluster contacts, by virtue of their interactions with them, forming implicit groups. In this paper, we describe the implicit social graph which is formed by users ’ interactions with contacts and groups of contacts, and which is distinct from explicit social graphs in which users explicitly add other individuals as their ”friends”. We introduce an interactionbased metric for estimating a user’s affinity to his contacts and groups. We then describe a novel friend suggestion algorithm that uses a user’s implicit social graph to generate a friend group, given a small seed set of contacts which the user has already labeled as friends. We show experimental results that demonstrate the importance of both implicit group relationships and interactionbased affinity ranking in suggesting friends. Finally, we discuss two applications of the Friend Suggest algorithm that have been released as Gmail Labs features.
Estimating and sampling graphs with multidimensional random walks. arXiv:1002.1751v2
, 2010
"... Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Ra ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new mdimensional random walk that uses m dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph. Categories andSubject Descriptors G.3 [Probability and Statistics]: Statistical computing