Results 1 
5 of
5
Testing Planarity of Partially Embedded Graphs
, 2009
"... We study the following problem: Given a planar graph G and a planar drawing (embedding) of a subgraph of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the paradigm of extending a partial solution to a complete one, which has been studied before in man ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We study the following problem: Given a planar graph G and a planar drawing (embedding) of a subgraph of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the paradigm of extending a partial solution to a complete one, which has been studied before in many different settings. Unlike many cases, in which the presence of a partial solution in the input makes hard an otherwise easy problem, we show that the planarity question remains polynomialtime solvable. Our algorithm is based on several combinatorial lemmata which show that the planarity of partially embedded graphs meets the “oncas” behaviour – obvious necessary conditions for planarity are also sufficient. These conditions are expressed in terms of the interplay between (a) rotation schemes and containment relationships between cycles and (b) the decomposition of a graph into its connected, biconnected, and triconnected components. This implies that no dynamic programming is needed for a decision algorithm and that the elements of the decomposition can be processed independently. Further, by equipping the components of the decomposition with suitable data structures and by carefully splitting the problem into simpler subproblems, we improve our algorithm to reach lineartime complexity. Finally, we consider several generalizations of the problem, e.g. minimizing the number of edges of the partial embedding that need to be rerouted to extend it, and argue that they are NPhard. Also, we show how our algorithm can be applied to solve related Graph Drawing problems.
The simultaneous representation problem for chordal, comparability and permutation graphs
 In WADS
, 2009
"... • with Ashkan Aazami and Joseph Cheriyan. Approximation Algorithms and Hardness ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
• with Ashkan Aazami and Joseph Cheriyan. Approximation Algorithms and Hardness
Testing Simultaneous Planarity when the Common Graph is 2Connected
, 2011
"... Two planar graphs G1 and G2 sharing some vertices and edges are simultaneously planar if they have planar drawings such that a shared vertex [edge] is represented by the same point [curve] in both drawings. It is an open problem whether simultaneous planarity can be tested efficiently. We give a lin ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Two planar graphs G1 and G2 sharing some vertices and edges are simultaneously planar if they have planar drawings such that a shared vertex [edge] is represented by the same point [curve] in both drawings. It is an open problem whether simultaneous planarity can be tested efficiently. We give a lineartime algorithm to test simultaneous planarity when the two graphs share a 2connected subgraph. Our algorithm extends to the case of k planar graphs where each vertex [edge] is either common to all graphs or belongs to exactly one of them, and the common subgraph is 2connected.