Results 1  10
of
639
Generalized Autoregressive Conditional Heteroskedasticity
 JOURNAL OF ECONOMETRICS
, 1986
"... A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametri ..."
Abstract

Cited by 1023 (18 self)
 Add to MetaCart
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an empirical example relating to the uncertainty of the inflation rate is presented.
Stochastic Volatility: Likelihood Inference And Comparison With Arch Models
, 1994
"... this paper we exploit Gibbs sampling to provide a likelihood framework for the analysis of stochastic volatility models, demonstrating how to perform either maximum likelihood or Bayesian estimation. The paper includes an extensive Monte Carlo experiment which compares the efficiency of the maximum ..."
Abstract

Cited by 354 (37 self)
 Add to MetaCart
this paper we exploit Gibbs sampling to provide a likelihood framework for the analysis of stochastic volatility models, demonstrating how to perform either maximum likelihood or Bayesian estimation. The paper includes an extensive Monte Carlo experiment which compares the efficiency of the maximum likelihood estimator with that of quasilikelihood and Bayesian estimators proposed in the literature. We also compare the fit of the stochastic volatility model to that of ARCH models using the likelihood criterion to illustrate the flexibility of the framework presented. Some key words: ARCH, Bayes estimation, Gibbs sampler, Heteroscedasticity, Maximum likelihood, Quasimaximum likelihood, Simulation, Stochastic EM algorithm, Stochastic volatility, Stock returns. 1 INTRODUCTION
Measuring and testing the impact of news on volatility
 Journal of Finance
, 1993
"... This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are p ..."
Abstract

Cited by 339 (11 self)
 Add to MetaCart
This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are presented which emphasize the asymmetry of the volatility response to news. A partially nonparametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR) and Nelson's EGARCE. Similar results hold on a precrash sample period but are less strong.
Expected stock returns and volatility
 Journal of Financial Economics
, 1987
"... This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evid ..."
Abstract

Cited by 337 (8 self)
 Add to MetaCart
This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evidence that unexpected stock market returns are negatively related to the unexpected change in the volatility of stock returns. This negative relation provides indirect evidence of a positive relation between expected risk premiums and volatility. 1.
Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts
"... Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, ..."
Abstract

Cited by 271 (33 self)
 Add to MetaCart
Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, a voluminous literature has emerged for modeling the temporal dependencies in financial market volatility at the daily and lower frequencies using ARCH and stochastic volatility type models. Most of these studies find highly significant insample parameter estimates and pronounced intertemporal volatility persistence. Meanwhile, when judged by standard forecast evaluation criteria, based on the squared or absolute returns over daily or longer forecast horizons, standard volatility models provide seemingly poor forecasts. The present paper demonstrates that, contrary to this contention, in empirically realistic situations the models actually produce strikingly accurate interdaily forecasts f...
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 265 (34 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the longrun dynamics of realized logarithmic volatilities are well approximated by a fractionallyintegrated longmemory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated highfrequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormalnormal mixture forecast distribution provides conditionally wellcalibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitragefree multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from highfrequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
Evaluating Interval Forecasts
 International Economic Review
, 1997
"... This paper is intended to address the deficiency by clearly defining what is meant by a "good" interval forecast, and describing how to test if a given interval forecast deserves the label "good". One of the motivations of Engle's (1982) classic paper was to form dynamic interval forecasts around po ..."
Abstract

Cited by 166 (10 self)
 Add to MetaCart
This paper is intended to address the deficiency by clearly defining what is meant by a "good" interval forecast, and describing how to test if a given interval forecast deserves the label "good". One of the motivations of Engle's (1982) classic paper was to form dynamic interval forecasts around point predictions. The insight was that the intervals should be narrow in tranquil times and wide in volatile times, so that the occurrences of observations outside the interval forecast would be spread out over the sample and not come in clusters. An interval forecast that 3 fails to account for higherorder dynamics may be correct on average (have correct unconditional coverage), but in any given period it will have incorrect conditional coverage characterized by clustered outliers. These concepts will be defined precisely below, and tests for correct conditional coverage are suggested. Chatfield (1993) emphasizes that model misspecification is a much more important source of poor interval forecasting than is simple estimation error. Thus, our testing criterion and the tests of this criterion are model free. In this regard, the approach taken here is similar to the one taken by Diebold and Mariano (1995). This paper can also be seen as establishing a formal framework for the ideas suggested in Granger, White and Kamstra (1989). Recently, financial market participants have shown increasing interest in interval forecasts as measures of uncertainty. Thus, we apply our methods to the interval forecasts provided by J.P. Morgan (1995). Furthermore, the socalled "ValueatRisk" measures suggested for risk measurement correspond to tail forecasts, i.e., onesided interval forecasts of portfolio returns. Lopez (1996) evaluates these types of forecasts applying the procedures develo...
Emerging Equity Market Volatility
, 1997
"... Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expe ..."
Abstract

Cited by 157 (28 self)
 Add to MetaCart
Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expected returns and conditional variance processes. Our timeseries and crosssectional models analyze the reasons that volatility is different across emerging markets, particularly with respect to the timing of capital market reforms. We find that capital market liberalizations often increase the correlation between local market returns and the world market but do not drive up local market volatility.
On the Detection and Estimation of Long Memory in Stochastic Volatility
, 1995
"... Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing this ..."
Abstract

Cited by 125 (6 self)
 Add to MetaCart
Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing this longrange dependence are examined and the properties of a LongMemory Stochastic Volatility (LMSV) model, constructed by incorporating an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process in a stochastic volatility scheme, are discussed. Strongly consistent estimators for the parameters of this LMSV model are obtained by maximizing the spectral likelihood. The distribution of the estimators is analyzed by means of a Monte Carlo study. The LMSV is applied to daily stock market returns providing an improved description of the volatility behavior. In order to assess the empirical relevance of this approach, tests for longmemory volatility are described and applied to an e...