Results 1 
2 of
2
The minimal, phasetransition model for the cellnumber maintenance by the hyperplasiaextended homeorhesis
 Acta Biotheoretica 54 (2) (2006) 44
, 2005
"... Oncogenic hyperplasia is the first and inevitable stage of formation of a (solid) tumor. This stage is also the core of many other proliferative diseases. The present work proposes the first minimal model that combines homeorhesis with oncogenic hyperplasia where the latter is regarded as a genotoxi ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Oncogenic hyperplasia is the first and inevitable stage of formation of a (solid) tumor. This stage is also the core of many other proliferative diseases. The present work proposes the first minimal model that combines homeorhesis with oncogenic hyperplasia where the latter is regarded as a genotoxically activated homeorhetic dysfunction. This dysfunction is specified as the transitions of the fluid of cells from a fluid, homeorhetic state to a solid, hyperplastictumor state, and back. The key part of the model is a nonlinear reactiondiffusion equation (RDE) where the biochemicalreaction rate is generalized to the one in the wellknown Schlögl physical theory of the nonequilibrium phase transitions. A rigorous analysis of the stability and qualitative aspects of the model, where possible, are presented in detail. This is related to the spatially homogeneous case, i.e. when the above RDE is reduced to a nonlinear ordinary differential equation. The mentioned genotoxic activation is treated as a prevention of the quiescent G0stage of the cell cycle implemented with the threshold mechanism that employs the critical concentration of the cellular fluid and the nonquiescentcellduplication time. The continuous tumor morphogeny is described as a timespacedependent
Emergence as a ComputabilityTheoretic Phenomenon
, 2008
"... In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well un ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well understood, and (with important exceptions) captured by mathematics from which it is relatively easy to extract algorithmic content. A widespread view is that the difficulty in describing transitions from algorithmic activity to the emergence associated with chaotic situations is a simple case of complexity outstripping computational resources and human ingenuity. Or, on the other hand, that phenomena transcending the standard Turing model of computation, if they exist, must necessarily lie outside the domain of classical computability theory. In this talk we suggest that much of the current confusion arises from conceptual gaps and the lack of a suitably fundamental model within which to situate emergence. We examine the potential for placing emergent relations in a familiar context based on Turing’s 1939 model for interactive computation over structures described in terms of reals. The explanatory power of this model is explored, formalising informal descriptions in terms of mathematical definability and invariance, and relating a range of basic scientific puzzles to results and intractable problems in computability theory. In this talk