Results 1  10
of
118
Partial Constraint Satisfaction
, 1992
"... . A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying ..."
Abstract

Cited by 427 (23 self)
 Add to MetaCart
. A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying a maximal number of constraints. Standard backtracking and local consistency techniques for solving constraint satisfaction problems can be adapted to cope with, and take advantage of, the differences between partial and complete constraint satisfaction. Extensive experimentation on maximal satisfaction problems illuminates the relative and absolute effectiveness of these methods. A general model of partial constraint satisfaction is proposed. 1 Introduction Constraint satisfaction involves finding values for problem variables subject to constraints on acceptable combinations of values. Constraint satisfaction has wide application in artificial intelligence, in areas ranging from temporal r...
An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits
 IEEE Transactions on Computers
, 1981
"... The DAlgorithm (DALG) is shown to be ineffective for the class of combinational logic circuits that is used to implement Error Correction and Translation (ECAT) functions. PODEM (PathOriented Decision Making) is a new test generation algorithm for combinational logic circuits. PODEM uses an implic ..."
Abstract

Cited by 220 (0 self)
 Add to MetaCart
The DAlgorithm (DALG) is shown to be ineffective for the class of combinational logic circuits that is used to implement Error Correction and Translation (ECAT) functions. PODEM (PathOriented Decision Making) is a new test generation algorithm for combinational logic circuits. PODEM uses an implicit enumeration approach analogous to that used for solving 0 1 integer programming problems. It is shown that PODEM is very efficient for ECAT circuits and is significantly more efficient than DALC over the general spectrum of combinational logic circuits. A distinctive feature of PODEM is its simplicity when compared to the DAlgorithm. PODEM is a complete algorithm in that it will generate a test if one exists. Heuristics are used to achieve an efficient implicit search of the space of all possible primary input patterns until either a test is found or the space is exhausted.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Practical Applications of Constraint Programming
 CONSTRAINTS
, 1996
"... Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples, ..."
Abstract

Cited by 105 (1 self)
 Add to MetaCart
Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples,
Ontological Semantics
, 2004
"... This book introduces ontological semantics, a comprehensive approach to the treatment of text meaning by computer. Ontological semantics is an integrated complex of theories, methodologies, descriptions and implementations. In ontological semantics, a theory is viewed as a set of statements determin ..."
Abstract

Cited by 85 (27 self)
 Add to MetaCart
This book introduces ontological semantics, a comprehensive approach to the treatment of text meaning by computer. Ontological semantics is an integrated complex of theories, methodologies, descriptions and implementations. In ontological semantics, a theory is viewed as a set of statements determining the format of descriptions of the phenomena with which the theory deals. A theory is associated with a methodology used to obtain the descriptions. Implementations are computer systems that use the descriptions to solve specific problems in text processing. Implementations of ontological semantics are combined with other processing systems to produce applications, such as information extraction or machine translation. The theory of ontological semantics is built as a society of microtheories covering such diverse ground as specific language phenomena, world knowledge organization, processing heuristics and issues relating to knowledge representation and implementation system architecture. The theory briefly sketched above is a toplevel microtheory, the ontological semantics theory per se. Descriptions in ontological semantics include text meaning representations, lexical entries, ontological concepts and instances as well as procedures for manipulating texts and their meanings. Methodologies in ontological semantics are sets of techniques and instructions for acquiring and
Data allocation in distributed database systems
 ACM Transactions on Database Systems
, 1988
"... The problem of allocating the data of a database to the sites of a communication network is investigated. This problem deviates from the wellknown file allocation problem in several aspects. First, the objects to be allocated are not known a priori; second, these objects are accessed by schedules t ..."
Abstract

Cited by 71 (1 self)
 Add to MetaCart
The problem of allocating the data of a database to the sites of a communication network is investigated. This problem deviates from the wellknown file allocation problem in several aspects. First, the objects to be allocated are not known a priori; second, these objects are accessed by schedules that contain transmissions between objects to produce the result. A model that makes it possible to compare the cost of allocations is presented, the cost can be computed for different cost functions and for processing schedules produced by arbitrary query processing algorithms. For minimizing the total transmission cost, a method is proposed to determine the fragments to be allocated from the relations in the conceptual schema and the queries and updates executed by the users. For the same cost function, the complexity of the data allocation problem is investigated. Methods for obtaining optimal and heuristic solutions under various ways of computing the cost of an allocation are presented and compared. Two different approaches to the allocation management problem are presented and their merits are discussed.
Optimal Solutions for MultiUnit Combinatorial Auctions: Branch and Bound Heuristics
 In Proceedings of the Second acm Conference on Electronic Commerce
, 2000
"... Finding optimal solutions for multiunit combinatorial auctions is a hard problem and nding approximations to the optimal solution is also hard. We investigate the use of BranchandBound techniques: they require both a way to bound from above the value of the best allocation and a good criterion to ..."
Abstract

Cited by 69 (4 self)
 Add to MetaCart
Finding optimal solutions for multiunit combinatorial auctions is a hard problem and nding approximations to the optimal solution is also hard. We investigate the use of BranchandBound techniques: they require both a way to bound from above the value of the best allocation and a good criterion to decide which bids are to be tried rst. Dierent methods for eciently bounding from above the value of the best allocation are considered. Theoretical original results characterize the best approximation ratio and the ordering criterion that provides it. We suggest to use this criterion. Keywords Combinatorial Auctions, Branch and Bound 1. MULTIUNIT COMBINATORIAL AUCTIONS (MUCAS) Auctions have been used from times immemorial, but the renewed modern interest in auctions stems from: their increased use for selling o government property after WWII and later in extensive denationalizations, and the theoretical breakthroughs started by [14]. A very recent surge of interest in aucti...
Crosslayer design for lifetime maximization in interferencelimited wireless sensor networks
, 2006
"... We consider the joint optimal design of the physical, medium access control (MAC), and routing layers to maximize the lifetime of energyconstrained wireless sensor networks. The problem of computing lifetimeoptimal routing flow, link schedule, and link transmission powers for all active time slots ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
We consider the joint optimal design of the physical, medium access control (MAC), and routing layers to maximize the lifetime of energyconstrained wireless sensor networks. The problem of computing lifetimeoptimal routing flow, link schedule, and link transmission powers for all active time slots is formulated as a nonlinear optimization problem. We first restrict the link schedules to the class of interferencefree time division multiple access (TDMA) schedules. In this special case, we formulate the optimization problem as a mixed integerconvex program, which can be solved using standard techniques. Moreover, when the slots lengths are variable, the optimization problem is convex and can be solved efficiently and exactly using interior point methods. For general nonorthogonal link schedules, we propose an iterative algorithm that alternates between adaptive link scheduling and computation of optimal link rates and transmission powers for a fixed link schedule. The performance of this algorithm is compared to other design approaches for several network topologies. The results illustrate the advantages of load balancing, multihop routing, frequency reuse, and interference mitigation in increasing the lifetime of energyconstrained networks. We also briefly discuss computational approaches to extend this algorithm to large networks.
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
"... Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object’s location one can take a sliding window approach, but this strongly increases the computational ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object’s location one can take a sliding window approach, but this strongly increases the computational cost, because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in constrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest neighbor classifiers based on the χ²distance. We demonstrate stateoftheart localization performance of the resulting systems on the
Anomalies in Parallel BranchandBound Algorithms
, 1984
"... We consider the effects of parallelizing branchandbound algorithms by expanding several live nodes simultaneously. It is shown that it is quite possible for a parallel branchandbound algorithm using n 2 processors to take more time than one using n 1 processors even though n 1 < n 2 . Furthermor ..."
Abstract

Cited by 50 (3 self)
 Add to MetaCart
We consider the effects of parallelizing branchandbound algorithms by expanding several live nodes simultaneously. It is shown that it is quite possible for a parallel branchandbound algorithm using n 2 processors to take more time than one using n 1 processors even though n 1 < n 2 . Furthermore, it is also possible to achieve speedups that are in excess of the ratio n 2 /n 1 . Experimental results with the 0/1Knapsack and Traveling Salesperson problems are also presented.