Results 1 
3 of
3
Model selection and accounting for model uncertainty in graphical models using Occam's window
, 1993
"... We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection o ..."
Abstract

Cited by 264 (46 self)
 Add to MetaCart
We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection of a single model; inference is then conditional on the selected model. The sampling properties of such a strategy are complex, and the failure to take account of model uncertainty leads to underestimation of uncertainty about quantities of interest. In principle, a panacea is provided by the standard Bayesian formalism which averages the posterior distributions of the quantity of interest under each of the models, weighted by their posterior model probabilities. Furthermore, this approach is optimal in the sense of maximising predictive ability. However, this has not been used in practice because computing the posterior model probabilities is hard and the number of models is very large (often greater than 1011). We argue that the standard Bayesian formalism is unsatisfactory and we propose an alternative Bayesian approach that, we contend, takes full account of the true model uncertainty byaveraging overamuch smaller set of models. An efficient search algorithm is developed for nding these models. We consider two classes of graphical models that arise in expert systems: the recursive causal models and the decomposable
Bayesian model selection in structural equation models
, 1993
"... A Bayesian approach to model selection for structural equation models is outlined. This enables us to compare individual models, nested or nonnested, and also to search through the (perhaps vast) set of possible models for the best ones. The approach selects several models rather than just one, whe ..."
Abstract

Cited by 29 (10 self)
 Add to MetaCart
A Bayesian approach to model selection for structural equation models is outlined. This enables us to compare individual models, nested or nonnested, and also to search through the (perhaps vast) set of possible models for the best ones. The approach selects several models rather than just one, when appropriate, and so enables us to take account, both informally and formally, of uncertainty about model structure when making inferences about quantities of interest. The approach tends to select simpler models than strategies based on multiple Pvaluebased tests. It may thus help to overcome the criticism of structural
Monografías del Semin. Matem. García de Galdeano. 27: 469–482, (2003). Loglinear Models: An approach based on φDivergences
"... In this paper we present a review of some results about inference based on φdivergence measures, under assumptions of multinomial sampling and loglinear models. The minimum φdivergence estimator, which is seen to be a generalization of the maximum likelihood estimator is considered. This estimator ..."
Abstract
 Add to MetaCart
In this paper we present a review of some results about inference based on φdivergence measures, under assumptions of multinomial sampling and loglinear models. The minimum φdivergence estimator, which is seen to be a generalization of the maximum likelihood estimator is considered. This estimator is used in a φdivergence measure which is the basis of new statistics for solving three important problems of testing regarding loglinear models: Goodnessoffit, nested sequence of loglinear models and nonadditivity in loglinear models.