Results 1 
2 of
2
The Mathematician as a Formalist
 in Truth in Mathematics (H.G. Dales and
, 1998
"... Introduction The existence of this meeting bears testimony to the anodyne remark that there is a continuing debate about what it means to say of a statement in mathematics that it is `true'. This debate began at least 2500 years ago, and will presumably continue at least well into the next millenni ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Introduction The existence of this meeting bears testimony to the anodyne remark that there is a continuing debate about what it means to say of a statement in mathematics that it is `true'. This debate began at least 2500 years ago, and will presumably continue at least well into the next millennium; it would be implausible and perhaps presumptuous to suppose that even the union of the talented and distinguished speakers that have been assembled here in Mussomeli will approach any solution to the problem, or even arrive at a consensus of what a solution would amount to. In the end, it falls to the philosophers, with their professional expertise and training, to carry forward the debate and to move us to a fuller understanding of this subtle and elusive matter. Indeed, we are hearing at this meeting a variety of contributions to the debate from different philosophical points of view; also, there is a good number of recent published contributions to the debate (see (Maddy 1990)
Proving Induction
, 2011
"... Abstract: The hard problem of induction is to argue without begging the question that inductive inference, applied properly in the proper circumstances, is conducive to truth. A recent theorem seems to show that the hard problem has a deductive solution. The theorem, provable in zfc, states that a p ..."
Abstract
 Add to MetaCart
Abstract: The hard problem of induction is to argue without begging the question that inductive inference, applied properly in the proper circumstances, is conducive to truth. A recent theorem seems to show that the hard problem has a deductive solution. The theorem, provable in zfc, states that a predictive function M exists with the following property: whatever world we live in, M correctly predicts the world’s present state given its previous states at all times apart from a wellordered subset. On the usual model of time a wellordered subset is small relative to the set of all times. M’s existence therefore seems to provide a solution to the hard problem. My paper argues for two conclusions. First, the theorem does not solve the hard problem of induction. More positively though, it solves a version of the problem in which the structure of time is given modulo our choice of set theory. 1 the hard problem Call the task of persuading an inductive sceptic that inductive inference to new conclusions is truthconducive the hard problem of induction. Inductive