Results 1  10
of
212
A Method for Obtaining Digital Signatures and PublicKey Cryptosystems
 Communications of the ACM
, 1978
"... An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be enciphered usin ..."
Abstract

Cited by 2895 (30 self)
 Add to MetaCart
An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intended recipient. Only he can decipher the message, since only he knows the corresponding decryption key. 2. A message can be "signed" using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in "electronic mail" and "electronic funds transfer" systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two lar...
How to leak a secret
 PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON THE THEORY AND APPLICATION OF CRYPTOLOGY AND INFORMATION SECURITY: ADVANCES IN CRYPTOLOGY
, 2001
"... In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and ..."
Abstract

Cited by 1754 (4 self)
 Add to MetaCart
In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and no coordination: any user can choose any set of possible signers that includes himself, and sign any message by using his secret key and the others ’ public keys, without getting their approval or assistance. Ring signatures provide an elegant way to leak authoritative secrets in an anonymous way, to sign casual email in a way which can only be verified by its intended recipient, and to solve other problems in multiparty computations. The main contribution of this paper is a new construction of such signatures which is unconditionally signerambiguous, provably secure in the random oracle model, and exceptionally efficient: adding each ring member increases the cost of signing or verifying by a single modular multiplication and a single symmetric encryption.
A Digital Signature Scheme Secure Against Adaptive ChosenMessage Attacks
, 1995
"... We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a ..."
Abstract

Cited by 827 (48 self)
 Add to MetaCart
We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a way that depends on the signatures of previously chosen messages) can not later forge the signature of even a single additional message. This may be somewhat surprising, since the properties of having forgery being equivalent to factoring and being invulnerable to an adaptive chosenmessage attack were considered in the folklore to be contradictory. More generally, we show how to construct a signature scheme with such properties based on the existence of a "clawfree" pair of permutations  a potentially weaker assumption than the intractibility of integer factorization. The new scheme is potentially practical: signing and verifying signatures are reasonably fast, and signatures are compact.
Timing Attacks on Implementations of DiffieHellman, RSA, DSS, and Other Systems
, 1996
"... By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known cip ..."
Abstract

Cited by 417 (3 self)
 Add to MetaCart
By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known ciphertext. Actual systems are potentially at risk, including cryptographic tokens, networkbased cryptosystems, and other applications where attackers can make reasonably accurate timing measurements. Techniques for preventing the attack for RSA and DiffieHellman are presented. Some cryptosystems will need to be revised to protect against the attack, and new protocols and algorithms may need to incorporate measures to prevent timing attacks.
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 369 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
Universal OneWay Hash Functions and their Cryptographic Applications
, 1989
"... We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We ..."
Abstract

Cited by 313 (13 self)
 Add to MetaCart
We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We prove constructively that universal oneway hash functions exist if any 11 oneway functions exist. Among the various applications of the primitive is a OneWay based Secure Digital Signature Scheme which is existentially secure against adoptive attacks. Previously, all provably secure signature schemes were based on the stronger mathematical assumption that trapdoor oneway functions exist. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 Part of this work was done while the authors were at the IBM Almaden Research Center. The first author was supported in part by NSF grant CCR88 13632. A preliminary version of this work app...
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 311 (16 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Analysis of keyexchange protocols and their use for building secure channels
, 2001
"... Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with ..."
Abstract

Cited by 261 (16 self)
 Add to MetaCart
Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with symmetric encryption and authentication functions to provide provably secure communication channels (as defined here); and (ii) the definition allows for simple modular proofs of security: one can design and prove security of keyexchange protocols in an idealized model where the communication links are perfectly authenticated, and then translate them using general tools to obtain security in the realistic setting of adversarycontrolled links. We exemplify the usability of our results by applying them to obtain the proof of two classes of keyexchange protocols, DiffieHellman and keytransport, authenticated via symmetric or asymmetric techniques. 1
A practical and provably secure coalitionresistant group signature scheme
, 2000
"... A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes ..."
Abstract

Cited by 238 (20 self)
 Add to MetaCart
A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes or group identification scheme with revocable anonymity. This work introduces a new provably secure group signature and a companion identity escrow scheme that are significantly more efficient than the state of the art. In its interactive, identity escrow form, our scheme is proven secure and coalitionresistant under the strong RSA and the decisional DiffieHellman assumptions. The security of the noninteractive variant, i.e., the group signature scheme, relies additionally on the FiatShamir heuristic (also known as the random oracle model).
The NRL Protocol Analyzer: An Overview
, 1996
"... this paper we give an overview of how the Analyzer works and describe its achievements so far. We also show how our use of the Prolog language benefited us in the design and implementation of the Analyzer. / 1. INTRODUCTION ..."
Abstract

Cited by 236 (20 self)
 Add to MetaCart
this paper we give an overview of how the Analyzer works and describe its achievements so far. We also show how our use of the Prolog language benefited us in the design and implementation of the Analyzer. / 1. INTRODUCTION