Results 1 
2 of
2
Indexed InductionRecursion
, 2001
"... We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in ..."
Abstract

Cited by 51 (17 self)
 Add to MetaCart
(Show Context)
We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in intuitionistic type theory. The more restricted of the two axiomatization arises naturally by considering indexed inductiverecursive de nitions as initial algebras in slice categories, whereas the other admits a more general and convenient form of an introduction rule.
Inductionrecursion and initial algebras
 Annals of Pure and Applied Logic
, 2003
"... 1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition ..."
Abstract

Cited by 33 (12 self)
 Add to MetaCart
(Show Context)
1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott (&quot;Constructive Validity&quot;) [31] and MartinL&quot;of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL&quot;of's definition of a universe `a la Tarski [19], which consists of a set U