Results 1 
7 of
7
A Global Optimization Method, αBB, for General TwiceDifferentiable Constrained NLPs: I  Theoretical Advances
, 1997
"... In this paper, the deterministic global optimization algorithm, αBB, (αbased Branch and Bound) is presented. This algorithm offers mathematical guarantees for convergence to a point arbitrarily close to the global minimum for the large class of twicedifferentiable NLPs. The key idea is the constru ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
In this paper, the deterministic global optimization algorithm, αBB, (αbased Branch and Bound) is presented. This algorithm offers mathematical guarantees for convergence to a point arbitrarily close to the global minimum for the large class of twicedifferentiable NLPs. The key idea is the construction of a converging sequence of upper and lower bounds on the global minimum through the convex relaxation of the original problem. This relaxation is obtained by (i) replacing all nonconvex terms of special structure (i.e., bilinear, trilinear, fractional, fractional trilinear, univariate concave) with customized tight convex lower bounding functions and (ii) by utilizing some α parameters as defined by Maranas and Floudas (1994b) to generate valid convex underestimators for nonconvex terms of generic structure. In most cases, the calculation of appropriate values for the α parameters is a challenging task. A number of approaches are proposed, which rigorously generate a set of α par...
Advances in Mathematical Programming for Automated Design Integration
 KOREAN J. CHEM. ENG
, 1999
"... This paper presents a review of advances that have taken place in the mathematical programming approach to process design and synthesis. A review is first presented on the algorithms that are available for solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming model ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
This paper presents a review of advances that have taken place in the mathematical programming approach to process design and synthesis. A review is first presented on the algorithms that are available for solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming models. The formulation of superstructures, models and solution strategies is also discussed for the effective solution of the corresponding optimization problems. The rest of the paper is devoted to reviewing recent mathematical programming models for the synthesis of reactor networks, distillation sequences, heat exchanger networks, mass exchanger networks, utility plants, and total flowsheets. As will be seen from this review, the progress that has been achieved in this area over the last decade is very significant.
Discrete Optimization Methods and their Role in the Integration of Planning and Scheduling
 AICHE SYMPSIUM SERIES
, 2002
"... The need for improvement in process operations, logistics and supply chain management has created a great demand for the development of optimization models for planning and scheduling. In this paper we first review the major classes of planning and scheduling models that arise in process operations, ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The need for improvement in process operations, logistics and supply chain management has created a great demand for the development of optimization models for planning and scheduling. In this paper we first review the major classes of planning and scheduling models that arise in process operations, and establish the underlying mathematical structure of these problems. As will be shown, the nature of these models is greatly affected by the time representation (discrete or continuous), and is often dominated by discrete decisions. We then briefly review the major recent developments in mixedinteger linear and nonlinear programming, disjunctive programming and constraint programming, as well as general decomposition techniques for solving these problems. We present a general formulation for integrating planning and scheduling to illustrate the models and methods discussed in this paper.
ADVANCES IN MATHEMATICAL PROGRAMMING FOR THE SYNTHESIS OF PROCESS SYSTEMS
"... This paper presents a review of advances that have taken place in the mathematical programming approach to process design and synthesis. A review is first presented on the algorithms that are available for solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming model ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
This paper presents a review of advances that have taken place in the mathematical programming approach to process design and synthesis. A review is first presented on the algorithms that are available for solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming models. The formulation of superstructures, models and solution strategies is also discussed for the effective solution of the corresponding optimization problems. The rest of the paper is devoted to reviewing recent mathematical programming models for the synthesis of reactor networks, distillation sequences, heat exchanger networks, mass exchanger networks, utility plants, and total flowsheets. As will be seen from this review, the progress that has been achieved in this area over the last decade is very significant. 1.
A new approach in deterministic global optimisation of problems with ordinary differential equations
, 2003
"... ..."
Digital Object Identifier (DOI) 10.1007/s1010700304676
"... Global optimization of mixedinteger nonlinear programs: ..."
(Show Context)
Reviewers:
"... A set of procedures to estimate model parameters online and offline ..."
(Show Context)