Results 1  10
of
10
A Global Optimization Method, αBB, for General TwiceDifferentiable Constrained NLPs: I  Theoretical Advances
, 1997
"... In this paper, the deterministic global optimization algorithm, αBB, (αbased Branch and Bound) is presented. This algorithm offers mathematical guarantees for convergence to a point arbitrarily close to the global minimum for the large class of twicedifferentiable NLPs. The key idea is the constru ..."
Abstract

Cited by 52 (3 self)
 Add to MetaCart
In this paper, the deterministic global optimization algorithm, αBB, (αbased Branch and Bound) is presented. This algorithm offers mathematical guarantees for convergence to a point arbitrarily close to the global minimum for the large class of twicedifferentiable NLPs. The key idea is the construction of a converging sequence of upper and lower bounds on the global minimum through the convex relaxation of the original problem. This relaxation is obtained by (i) replacing all nonconvex terms of special structure (i.e., bilinear, trilinear, fractional, fractional trilinear, univariate concave) with customized tight convex lower bounding functions and (ii) by utilizing some α parameters as defined by Maranas and Floudas (1994b) to generate valid convex underestimators for nonconvex terms of generic structure. In most cases, the calculation of appropriate values for the α parameters is a challenging task. A number of approaches are proposed, which rigorously generate a set of α par...
Quadratic Optimization
, 1995
"... . Quadratic optimization comprises one of the most important areas of nonlinear programming. Numerous problems in real world applications, including problems in planning and scheduling, economies of scale, and engineering design, and control are naturally expressed as quadratic problems. Moreover, t ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
. Quadratic optimization comprises one of the most important areas of nonlinear programming. Numerous problems in real world applications, including problems in planning and scheduling, economies of scale, and engineering design, and control are naturally expressed as quadratic problems. Moreover, the quadratic problem is known to be NPhard, which makes this one of the most interesting and challenging class of optimization problems. In this chapter, we review various properties of the quadratic problem, and discuss different techniques for solving various classes of quadratic problems. Some of the more successful algorithms for solving the special cases of bound constrained and large scale quadratic problems are considered. Examples of various applications of quadratic programming are presented. A summary of the available computational results for the algorithms to solve the various classes of problems is presented. Key words: Quadratic optimization, bilinear programming, concave pro...
Global Optimization For The Phase And Chemical Equilibrium Problem: Application To The NRTL Equation
 Comput. Chem. Eng
, 1994
"... Several approaches have been proposed for the computation of solutions to the phase and chemical equilibrium problem when the problem is posed as the minimization of the Gibbs free energy function. None of them can guarantee convergence to the true optimal solution, and are highly dependent on the s ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Several approaches have been proposed for the computation of solutions to the phase and chemical equilibrium problem when the problem is posed as the minimization of the Gibbs free energy function. None of them can guarantee convergence to the true optimal solution, and are highly dependent on the supplied initial point. Convergence to local solutions often occurs, yielding incorrect phase and component distributions. This work examines the problem when the liquid phase is adequately modeled by the NonRandom Two Liquid (NRTL) activity coefficient expression and the vapor phase is assumed to be ideal. The contribution of the proposed approach is twofold. Firstly, a novel and important property of the Gibbs free energy expression involving the NRTL equation is provided. It is subsequently shown that by introducing new variables, the problem can then be transformed into one where a biconvex objective function is minimized over a set of bilinear constraints. Secondly, the Global OPtimizat...
Global Optimization in Generalized Geometric Programming
 Engng
, 1997
"... A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints and the objective are decomposed into the difference of two convex functions. A convex relaxation of problem (DC) is then obtained based on the linear lower bounding of the concave parts of the objective function and constraints inside some box region. The proposed branch and bound type algorithm attains finite fflconvergence to the global minimum through the successive refinement of a convex relaxation of the feasible region and/or of the objective function and the subsequent solution of a series of nonlinear convex optimization problems. The efficiency of the proposed approach is enhanced by eliminating variables through monotonicity analysis, by maintaining tightly bound variables thro...
Deterministic Global Optimization In Design, Control, And Computational Chemistry
 IMA Volumes in Mathematics and its Applications : Large Scale Optimization with Applications, Part II
, 1997
"... . This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
. This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, and (iii) global optimization methods for general nonlinear programming problems. The classes of mathematical problems that are addressed range from indefinite quadratic programming to concave programs, to quadratically constrained problems, to polynomials, to general twice continuously differentiable nonlinear optimization problems. For the majority of the presented methods nondistributed global optimization approaches are discussed with the exception of decompositionbased methods where a distributed global optimization approach is presented. 1. Background. A significant effort has been expended in the last five decades toward theoretical and algorithmic studies of applications that arise...
New Formulations And Branching Strategies For The GOP Algorithm
"... In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. A global optimization algorithm, GOP, was presented for the solution of the problem through a series of primal and relaxed dual problems ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. A global optimization algorithm, GOP, was presented for the solution of the problem through a series of primal and relaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was proven to have finite convergence to anglobal optimum. In this paper, a branchandbound framework of the GOP algorithm is presented, along with several reduction tests that can be applied at each node of the branchandbound tree. The effect of the properties is to prune the tree and provide tighter underestimators for the relaxed dual problems. We also present a mixedinteger linear programming (MILP) formulation for the relaxed dual problem, which enables an implicit enumeration of the nodes in the branchandbound tree at each iteration. Finally, an alternate branching scheme is presented for the solution of the relaxed dual problem through a linear number of subproblems. Simple examples are presented to illustrate the new approaches. Detailed computational results on the implementation of both versions of the algorithm can be found in the companion paper in chapter 4.
Global Optimization of Nonconvex Nonlinear Programs Using Parallel Branch and Bound
, 1995
"... A branch and bound algorithm for computing globally optimal solutions to nonconvex nonlinear programs in continuous variables is presented. The algorithm is directly suitable for a wide class of problems arising in chemical engineering design. It can solve problems defined using algebraic functions ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
A branch and bound algorithm for computing globally optimal solutions to nonconvex nonlinear programs in continuous variables is presented. The algorithm is directly suitable for a wide class of problems arising in chemical engineering design. It can solve problems defined using algebraic functions and twice differentiable transcendental functions, in which finite upper and lower bounds can be placed on each variable. The algorithm uses rectangular partitions of the variable domain and a new bounding program based on convex/concave envelopes and positive definite combinations of quadratic terms. The algorithm is deterministic and obtains convergence with final regions of finite size. The partitioning strategy uses a sensitivity analysis of the bounding program to predict the best variable to split and the split location. Two versions of the algorithm are considered, the first using a local NLP algorithm (MINOS) and the second using a sequence of lower bounding programs in the search fo...
Computational Results For An Efficient Implementation Of The Gop Algorithm And Its Variants
"... Recently, Floudas and Visweswaran (1990, 1993) proposed a global optimization algorithm (GOP) for the solution of a large class of nonconvex problems through a series of primal and relaxed dual subproblems that provide upper and lower bounds on the global solution. Visweswaran and Floudas (1995a) pr ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
Recently, Floudas and Visweswaran (1990, 1993) proposed a global optimization algorithm (GOP) for the solution of a large class of nonconvex problems through a series of primal and relaxed dual subproblems that provide upper and lower bounds on the global solution. Visweswaran and Floudas (1995a) proposed a reformulation of the algorithm in the framework of a branch and bound approach that allows for an easier implementation. They also proposed an implicit enumeration of all the nodes in the resulting branch and bound tree using a mixed integer linear (MILP) formulation, and a linear branching scheme that reduces the number of subproblems from exponential to linear. In this paper, a complete implementation of the new versions of the GOP algorithm, as well as detailed computational results of applying the algorithm to various classes of nonconvex optimization problems is presented. The problems considered including pooling and blending problems, problems with separation and heat exchang...
Recent Advances in Global Optimization for Process Synthesis, Design and Control: Enclosure of All Solutions
 Computers and Chemical Engineering
, 1999
"... Recent advances in global optimization for process synthesis, design and control are discussed. After a review of the chemical engineering contributions, we focus on the enclosure of all solutions of nonlinear constrained systems of equations. Important theoretical results are presented accompanied ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Recent advances in global optimization for process synthesis, design and control are discussed. After a review of the chemical engineering contributions, we focus on the enclosure of all solutions of nonlinear constrained systems of equations. Important theoretical results are presented accompanied with computational studies on the enclosure of multiple steady states and all homogeneous azeotropes. 1 Introduction and Review A significant effort has been expended in the last four decades toward theoretical and algorithmic studies of applications that arise in Chemical Engineering Process Design, Process Synthesis, Process Control, as well as in Computational Chemistry and Molecular Biology. In the last decade we have experienced a dramatic growth of interest in Chemical Engineering for new methods of global optimization and their application to important engineering, as well as computational chemistry and molecular biology problems. Contributions from the chemical engineering communit...
Global Optimization In Design And Control Of Chemical Process Systems
 J. of Proc. Control
, 2001
"... : This paper presents an overview of the recent advances in deterministic global optimization approaches and their applications in the areas of Process Design and Control. The focus is on global optimization methods for (a) twicedifferentiable constrained nonlinear optimization problems, (b) mixed ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
: This paper presents an overview of the recent advances in deterministic global optimization approaches and their applications in the areas of Process Design and Control. The focus is on global optimization methods for (a) twicedifferentiable constrained nonlinear optimization problems, (b) mixedinteger nonlinear optimization problems, and (c) locating all solutions of nonlinear systems of equations. Theoretical advances and computational studies on process design, batch design under uncertainty, phase equilibrium, location of azeotropes, stability margin, process synthesis, and parameter estimation problems are discussed. Keywords: Global Optimization; Twice Differentiable NLPs; MixedInteger Nonlinear Optimization; Locating All Solutions; ffBB approach, Design and Control 1. INTRODUCTION A significant effort has been expended in the last five decades toward theoretical and algorithmic studies of applications that arise in Process Design and Control. In the last decade we have expe...