Results 1 
9 of
9
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 302 (32 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Coalgebras For Binary Methods: Properties Of Bisimulations And Invariants
, 2001
"... Coalgebras for endofunctors C > C can be used to model classes of objectoriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors C^op x C > C . This ext ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
Coalgebras for endofunctors C > C can be used to model classes of objectoriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors C^op x C > C . This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many standard results.
A modal proof theory for final polynomial coalgebras. Theoret
 Comput. Sci
"... An infinitary proof theory is developed for modal logics whose models are coalgebras of polynomial functors on the category of sets. The canonical model method from modal logic is adapted to construct a final coalgebra for any polynomial functor. The states of this final coalgebra are certain “maxim ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
An infinitary proof theory is developed for modal logics whose models are coalgebras of polynomial functors on the category of sets. The canonical model method from modal logic is adapted to construct a final coalgebra for any polynomial functor. The states of this final coalgebra are certain “maximal ” sets of formulas that have natural syntactic closure properties. The syntax of these logics extends that of previously developed modal languages for polynomial coalgebras by adding formulas that express the “termination ” of certain functions induced by transition paths. A completeness theorem is proven for the logic of functors which have the Lindenbaum property that every consistent set of formulas has a maximal extension. This property is shown to hold if if the deducibility relation is generated by countably many inference rules. A counterexample to completeness is also given. This is a polynomial functor that is not Lindenbaum: it has an uncountable set of formulas that is deductively consistent but has no maximal extension and is unsatisfiable, even though all of its countable subsets are satisfiable. 1
unknown title
"... While varieties of algebras (at least finitary ones) are the object of mathematical studies at least since Birkhoff’s seminal paper [8], the concept of cavariety of coalgebras is a very recent one: the term “covariety ” probably ..."
Abstract
 Add to MetaCart
While varieties of algebras (at least finitary ones) are the object of mathematical studies at least since Birkhoff’s seminal paper [8], the concept of cavariety of coalgebras is a very recent one: the term “covariety ” probably
A SIMPLIFICATION FUNCTOR FOR COALGEBRAS
"... For an arbitrarytype functor F, the notion of split coalgebras, that is, coalgebras for which the canonical projections onto the simple factor split, generalizes the wellknown notion of simple coalgebras. In case F weakly preserves kernels, the passage from a coalgebra to its simple factor is fun ..."
Abstract
 Add to MetaCart
For an arbitrarytype functor F, the notion of split coalgebras, that is, coalgebras for which the canonical projections onto the simple factor split, generalizes the wellknown notion of simple coalgebras. In case F weakly preserves kernels, the passage from a coalgebra to its simple factor is functorial. This is the simplification functor. It is left adjoint to the inclusion of the subcategory of simple coalgebras into the category SetF of Fcoalgebras, making it an epireflective one. If a product of split coalgebras exists, then this is split and preserved by the simplification functor. In particular, if a product of simple coalgebras exists, this is simple too. Copyright © 2006 Hindawi Publishing Corporation. All rights reserved. 1.
On Tree Coalgebras and Coalgebra Presentations
"... For deterministic systems, expressed as coalgebras over polynomial functors, every tree t (an element of the final coalgebra) turns out to represent a new coalgebra At. The universal property of these coalgebras, resembling freeness, is that for every state s of every system S there exists a unique ..."
Abstract
 Add to MetaCart
For deterministic systems, expressed as coalgebras over polynomial functors, every tree t (an element of the final coalgebra) turns out to represent a new coalgebra At. The universal property of these coalgebras, resembling freeness, is that for every state s of every system S there exists a unique coalgebra homomorphism from a unique At which takes the root of t to s. Moreover, the tree coalgebras are finitely presentable and form a strong generator. Thus, these categories of coalgebras are locally finitely presentable; in particular every system is a filtered colimit of finitely presentable systems. In contrast, for transition systems expressed as coalgebras over the finite–power– set functor we show that there are systems which fail to be filtered colimits of finitely presentable ( = finite) ones. Surprisingly, if λ is an uncountable cardinal, then λ–presentation is always well– behaved: whenever an endofunctor F preserves λ–filtered colimits (i.e., is λ–accessible), then every F coalgebra is a λ–filtered colimit of λ–presentable coalgebras; thus CoalgF is a locally λ–presentable category. Corollary: λ–accessible set functors are bounded at λ in the sense of Kawahara and Mori and, conversely, boundedness at λ implies λ+–accessibility. Key words: Coalgebras, Σ–labelled trees, λ–presentable objects and categories, accessible and bounded functors