Results 1  10
of
85
Decision Problems for Propositional Linear Logic
, 1990
"... Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, ..."
Abstract

Cited by 91 (17 self)
 Add to MetaCart
Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, which indicates unboundedness of resources, the decision problem becomes pspacecomplete. We also establish membership in np for the multiplicative fragment, npcompleteness for the multiplicative fragment extended with unrestricted weakening, and undecidability for certain fragments of noncommutative propositional linear logic. 1 Introduction Linear logic, introduced by Girard [14, 18, 17], is a refinement of classical logic which may be derived from a Gentzenstyle sequent calculus axiomatization of classical logic in three steps. The resulting sequent system Lincoln@CS.Stanford.EDU Department of Computer Science, Stanford University, Stanford, CA 94305, and the Computer Science Labo...
A Brief Guide to Linear Logic
, 1993
"... An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation. ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation.
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
Kleene Algebra with Domain
, 2003
"... We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressibility of Kleene algebra, in particular for the specification and analysis of state transition systems. We ..."
Abstract

Cited by 41 (29 self)
 Add to MetaCart
We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressibility of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and wellfoundedness. Second, an algebraic reconstruction of propositional Hoare logic.
Substructural Logics on Display
, 1998
"... Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen's sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek ca ..."
Abstract

Cited by 38 (16 self)
 Add to MetaCart
Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen's sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek calculus, which contains these multiple connectives, and obtain numerous logics like: exponentialfree linear logic, relevant logic, BCK logic, and intuitionistic logic, in an incremental way. Each of these logics also has a classical counterpart, and some also have a "cyclic" counterpart. These logics have been studied extensively and are quite well understood. Generalising further, one can start with intuitionistic BiLambek logic, which contains the dual of every connective from the Lambek calculus. The addition of the structural rules then gives Bilinear, Birelevant, BiBCK and Biintuitionistic logic, again in an incremental way. Each of these logics also has a classical counterpart, and som...
Partial Proof Trees as Building Blocks for a Categorial Grammar
 Linguistics and Philosophy
, 1997
"... We describe a categorial system (PPTS) based on partial proof trees (PPTs) as the building blocks of the system. The PPTs are obtained by unfolding the arguments of the type that would be associated with a lexical item in a simple categorial grammar. The PPTs are the basic types in the system and a ..."
Abstract

Cited by 37 (10 self)
 Add to MetaCart
We describe a categorial system (PPTS) based on partial proof trees (PPTs) as the building blocks of the system. The PPTs are obtained by unfolding the arguments of the type that would be associated with a lexical item in a simple categorial grammar. The PPTs are the basic types in the system and a derivation proceeds by combining PPTs together. We describe the construction of the finite set of basic PPTs and the operations for combining them. PPTS can be viewed as a categorial system incorporating some of the key insights of lexicalized tree adjoining grammar, namely the notion of an extended domain of locality and the consequent factoring of recursion from the domain of dependencies. PPTS therefore inherits the linguistic and computational properties of that system, and so can be viewed as a `middle ground' between a categorial grammar and a phrase structure grammar. We also discuss the relationship between PPTS, natural deduction, and linear logic proofnets, and argue that natural ...
Linear Logic and Noncommutativity in the Calculus of Structures
, 2003
"... macro \clap,whichisused on almost every page, came out of such a discussion. This thesis would not exist without the support of my wife Jana. During all the time she has been a continuous source of love and inspiration. This PhD thesis has been written with the financial support of the DFGGraduiert ..."
Abstract

Cited by 37 (11 self)
 Add to MetaCart
macro \clap,whichisused on almost every page, came out of such a discussion. This thesis would not exist without the support of my wife Jana. During all the time she has been a continuous source of love and inspiration. This PhD thesis has been written with the financial support of the DFGGraduiertenkolleg 334 "Spezifikation diskreter Prozesse und Prozesysteme durch operationelle Modelle und Logiken". iii iv Tab l e o f Contents Acknowledgements iii Tab l e of Contents v List of Figures vii 1Introduction 1 1.1Proof Theory andDeclarativeProgramming .................. 1 1.2LinearLogic .................................... 5 1.3Noncommutativity ................................ 8 1.4The Calculus of Structures . .......................... 9 1.5 Summary of Results............................... 12 1.6OverviewofContents.............................. 15 2LinearLogic and the Sequent Calculus 17 2.1Formulaeand Sequents . ............................. 17 2.2Rules andDerivations . .............
Ordered Linear Logic and Applications
, 2001
"... This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin Watkins which led me to simplify some of this work. Finally, I would like to thank my other advisor, John Reynolds, for all his kindness and support over the last five years. Abstract This thesis introduces a new logical system, ordered linear logic, which combines reasoning with unrestricted, linear, and ordered hypotheses. The logic conservatively extends (intuitionistic) linear logic, which contains both unrestricted and linear hypotheses, with a notion of ordered hypotheses. Ordered hypotheses must be used exactly once, subject to the order in which they were assumed (i.e., their order cannot be changed during the course of a derivation). This ordering constraint allows for logical representations of simple data structures such as stacks and queues. We construct ordered linear logic in the style of MartinL&quot;of from the basic notion of a hypothetical judgement. We then show normalization for the system by constructing a sequent calculus presentation and proving cutelimination of the sequent system.
A Logical View of Composition
 THEORETICAL COMPUTER SCIENCE
, 1993
"... We define two logics of safety specifications for reactive systems. The logics provide a setting for the study of composition rules. The two logics arise naturally from extant specification approaches; one of the logics is intuitionistic, while the other one is linear. ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
We define two logics of safety specifications for reactive systems. The logics provide a setting for the study of composition rules. The two logics arise naturally from extant specification approaches; one of the logics is intuitionistic, while the other one is linear.
Noncommutative logic II: sequent calculus and phase semantics
, 1998
"... INTRODUCTION Noncommutative logic is a unication of :  commutative linear logic (Girard 1987) and  cyclic linear logic (Girard 1989; Yetter 1990), a classical conservative extension of the Lambek calculus (Lambek 1958). In a previous paper with Abrusci (Abrusci and Ruet 1999) we presented the mu ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
INTRODUCTION Noncommutative logic is a unication of :  commutative linear logic (Girard 1987) and  cyclic linear logic (Girard 1989; Yetter 1990), a classical conservative extension of the Lambek calculus (Lambek 1958). In a previous paper with Abrusci (Abrusci and Ruet 1999) we presented the multiplicative fragment of noncommutative logic, with proof nets and a sequent calculus based on the structure of order varieties, and a sequentialization theorem. Here we consider full propositional noncommutative logic. Noncommutative logic. Let us rst review the basic ideas. Consider the purely noncommutative fragment of linear logic, obtained by removing the exchange rule entirely : ` ; ; ; , ` ; ; ; y This work has been partly carried out at LIENSCNRS, Ecole Normale Superieure (Paris), at McGill University