Results 1  10
of
18
Decision Problems for Propositional Linear Logic
, 1990
"... Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, ..."
Abstract

Cited by 90 (17 self)
 Add to MetaCart
Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. We show that unlike most other propositional (quantifierfree) logics, full propositional linear logic is undecidable. Further, we prove that without the modal storage operator, which indicates unboundedness of resources, the decision problem becomes pspacecomplete. We also establish membership in np for the multiplicative fragment, npcompleteness for the multiplicative fragment extended with unrestricted weakening, and undecidability for certain fragments of noncommutative propositional linear logic. 1 Introduction Linear logic, introduced by Girard [14, 18, 17], is a refinement of classical logic which may be derived from a Gentzenstyle sequent calculus axiomatization of classical logic in three steps. The resulting sequent system Lincoln@CS.Stanford.EDU Department of Computer Science, Stanford University, Stanford, CA 94305, and the Computer Science Labo...
A Brief Guide to Linear Logic
, 1993
"... An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation. ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation.
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
HigherOrder, Linear, Concurrent Constraint Programming
, 1992
"... We present a very simple and powerful framework for indeterminate, asynchronous, higherorder computation based on the formulaasagent and proofascomputation interpretation of (higherorder) linear logic [Gir87]. The framework significantly refines and extends the scope of the concurrent constrai ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
We present a very simple and powerful framework for indeterminate, asynchronous, higherorder computation based on the formulaasagent and proofascomputation interpretation of (higherorder) linear logic [Gir87]. The framework significantly refines and extends the scope of the concurrent constraint programming paradigm [Sar89] in two fundamental ways: (1) by allowing for the consumption of information by agents it permits a direct modelling of (indeterminate) state change in a logical framework, and (2) by admitting simplytyped terms as dataobjects, it permits the construction, transmission and application of (abstractions of) programs at runtime. Much more dramatically, however, the framework can be seen as presenting higherorder (and if desired, constraintenriched) versions of a variety of other asynchronous concurrent systems, including the asynchronous ("input guarded") fragment of the (firstorder) ßcalculus, Hewitt's actors formalism, (abstract forms of) Gelernter's Lin...
Linear Logic
, 1992
"... this paper we will restrict attention to propositional linear logic. The sequent calculus notation, due to Gentzen [10], uses roman letters for propositions, and greek letters for sequences of formulas. A sequent is composed of two sequences of formulas separated by a `, or turnstile symbol. One may ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
this paper we will restrict attention to propositional linear logic. The sequent calculus notation, due to Gentzen [10], uses roman letters for propositions, and greek letters for sequences of formulas. A sequent is composed of two sequences of formulas separated by a `, or turnstile symbol. One may read the sequent \Delta ` \Gamma as asserting that the multiplicative conjunction of the formulas in \Delta together imply the multiplicative disjunction of the formulas in \Gamma. A sequent calculus proof rule consists of a set of hypothesis sequents, displayed above a horizontal line, and a single conclusion sequent, displayed below the line, as below: Hypothesis1 Hypothesis2 Conclusion 4 Connections to Other Logics
Deciding Provability of Linear Logic Formulas
 Advances in Linear Logic
, 1994
"... Introduction There are many interesting fragments of linear logic worthy of study in their own right, most described by the connectives which they employ. Full linear logic includes all the logical connectives, which come in three dual pairs: the exponentials ! and ?, the additives & and \Phi, and ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Introduction There are many interesting fragments of linear logic worthy of study in their own right, most described by the connectives which they employ. Full linear logic includes all the logical connectives, which come in three dual pairs: the exponentials ! and ?, the additives & and \Phi, and the multiplicatives\Omega and . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . SRI International Computer Science Laboratory, Menlo Park CA 94025 USA. Work supported under NSF Grant CCR9224858. lincoln@csl.sri.com http://www.csl.sri.com/lincoln/lincoln.html Patrick Lincoln For the most part we will consider fragments of linear logic built up using these connectives in any combination. For example, full linear logic formulas may employ any connective, while multiplic
A typed foundation for directional logic programming
 In Proc. Workshop on Extensions to Logic Programming
, 1992
"... Abstract. A long standing problem in logic programming is how to impose directionality on programs in a safe fashion. The benefits of directionality include freedom from explicit sequential control, the ability to reason about algorithmic properties of programs (such as termination, complexity and d ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Abstract. A long standing problem in logic programming is how to impose directionality on programs in a safe fashion. The benefits of directionality include freedom from explicit sequential control, the ability to reason about algorithmic properties of programs (such as termination, complexity and deadlockfreedom) and controlling concurrency. By using Girard’s linear logic, we are able to devise a type system that combines types and modes into a unified framework, and enables one to express directionality declaratively. The rich power of the type system allows outputs to be embedded in inputs and vice versa. Type checking guarantees that values have unique producers, but multiple consumers are still possible. From a theoretical point of view, this work provides a “logic programming interpretation ” of (the proofs of) linear logic, adding to the concurrency and functional programming interpretations that are already known. It also brings logic programming into the broader world of typed languages and typesaspropositions paradigm, enriching it with static scoping and higherorder features.
Specifying RealTime FiniteState Systems in Linear Logic
 In 2nd International Workshop on Constraint Programming for TimeCritical Applications and MultiAgent Systems (COTIC
, 1998
"... Realtime finitestate systems may be specified in linear logic by means of linear implications between conjunctions of fixed finite length. In this setting, where time is treated as a dense linear ordering, safety properties may be expressed as certain provability problems. These provability proble ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Realtime finitestate systems may be specified in linear logic by means of linear implications between conjunctions of fixed finite length. In this setting, where time is treated as a dense linear ordering, safety properties may be expressed as certain provability problems. These provability problems are shown to be in pspace. They are solvable, with some guidance, by finite proof search in concurrent logic programming environments based on linear logic and acting as sort of modelcheckers. One advantage of our approach is that either it provides unsafe runs or it actually establishes safety. 1 Introduction There are a number of formalisms for expressing realtime processes, including [1, 6, 7, 3, 4, 5, 50, 44, 45, 38]. Many of these realtime formalisms are based on temporal logic or its variations [46, 38, 33] or on timed process algebras [14, 42, 43, 23, 12], or on Buchi automata [52, 3]. In some cases exact complexitytheoretic information is available, such as [51, 3, 5], while ...
Relating StateBased and ProcessBased Concurrency through Linear Logic
, 2006
"... This paper has the purpose of reviewing some of the established relationships between logic and concurrency, and of exploring new ones. Concurrent and distributed systems are notoriously hard to get right. Therefore, following an approach that has proved highly beneficial for sequential programs, mu ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
This paper has the purpose of reviewing some of the established relationships between logic and concurrency, and of exploring new ones. Concurrent and distributed systems are notoriously hard to get right. Therefore, following an approach that has proved highly beneficial for sequential programs, much effort has been invested in tracing the foundations of concurrency in logic. The starting points of such investigations have been various idealized languages of concurrent and distributed programming, in particular the wellestablished statetransformation model inspired to Petri nets and multiset rewriting, and the prolific processbased models such as the πcalculus and other process algebras. In nearly all cases, the target of these investigations has been linear logic, a formal language that supports a view of formulas as consumable resources. In the first part of this paper, we review some of these interpretations of concurrent languages into linear logic. In the second part of the paper, we propose a completely new approach to understanding concurrent and distributed programming as a manifestation of logic, which yields a language that merges those two main paradigms of concurrency. Specifically, we present a new semantics for multiset rewriting founded on an alternative view of linear logic. The resulting interpretation is extended with a majority of linear connectives into the language of ωmultisets. This interpretation drops the distinction between multiset elements and rewrite rules, and considerably enriches the expressive power of standard multiset rewriting with embedded rules, choice, replication, and more. Derivations are now primarily viewed as open objects, and are closed only to examine intermediate rewriting states. The resulting language can also be interpreted as a process algebra. For example, a simple translation maps process constructors of the asynchronous πcalculus to rewrite operators, while the structural equivalence corresponds directly to logicallymotivated structural properties of ωmultisets (with one exception).
Action and Change in Rewriting Logic
, 1996
"... Rewriting logic is proposed as a logic of concurrent action and change that solves the frame problem and that subsumes and unifies a number of previous logics of change, including linear logic and Horn logic with equality. Rewriting logic can represent action and change with great flexibility and ge ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Rewriting logic is proposed as a logic of concurrent action and change that solves the frame problem and that subsumes and unifies a number of previous logics of change, including linear logic and Horn logic with equality. Rewriting logic can represent action and change with great flexibility and generality; this flexibility is illustrated by many examples, including examples that show how concurrent objectoriented systems are naturally represented. In addition, rewriting logic has a simple formalism, with only a few rules of deduction; it supports userdefinable logical connectives, which can be chosen to fit the problem at hand; it is intrinsically concurrent; and it is realizable in a wide spectrum logical language (Maude and its MaudeLog extension) supporting executable specification and programming. Contents 1 Introduction 2 1.1 What the frame problem (in our sense) is . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 What the frame problem (in our sense) is not . . . . . . ....