Results 1  10
of
34
Speed is as Powerful as Clairvoyance
 Journal of the ACM
, 1995
"... We consider several well known nonclairvoyant scheduling problems, including the problem of minimizing the average response time, and besteffort firm realtime scheduling. It is known that there are no deterministic online algorithms for these problems with bounded (or even polylogarithmic in the n ..."
Abstract

Cited by 189 (23 self)
 Add to MetaCart
We consider several well known nonclairvoyant scheduling problems, including the problem of minimizing the average response time, and besteffort firm realtime scheduling. It is known that there are no deterministic online algorithms for these problems with bounded (or even polylogarithmic in the number of jobs) competitive ratios. We show that moderately increasing the speed of the processor used by the nonclairvoyant scheduler effectively gives this scheduler the power of clairvoyance. Furthermore, we show that there exist online algorithms with bounded competitive ratios on all inputs that are not closely correlated with processor speed. 1 Introduction We consider several well known nonclairvoyant scheduling problems, including the problem of minimizing the average response time [13, 15], and besteffort firm realtime scheduling [1, 2, 3, 4, 8, 11, 12, 18]. (We postpone formally defining these problems until the next section.) In nonclairvoyant scheduling some relevant information...
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 150 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for which very little is known from the point of view of approximation algorithms. It has recently been brought into focus in work on problems such as VLSI layout and routing in highspeed networks; in these settings, the current lack of understanding of the disjoint paths problem is often an obstacle to the design of practical heuristics.
BEYOND COMPETITIVE ANALYSIS
, 2000
"... The competitive analysis of online algorithms has been criticized as being too crude and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts the power of the adversary by allowingonly certain input distributions, while the other allows for comparisons ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
The competitive analysis of online algorithms has been criticized as being too crude and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts the power of the adversary by allowingonly certain input distributions, while the other allows for comparisons between information regimes for online decisionmaking. We illustrate the first with an application to the paging problem; as a byproduct we characterize completely the work functions of this important special case of the kserver problem. We use the second refinement to explore the power of lookahead in server and task systems.
EnergyEfficient Algorithms for . . .
, 2007
"... We study scheduling problems in batteryoperated computing devices, aiming at schedules with low total energy consumption. While most of the previous work has focused on finding feasible schedules in deadlinebased settings, in this article we are interested in schedules that guarantee good respons ..."
Abstract

Cited by 70 (2 self)
 Add to MetaCart
We study scheduling problems in batteryoperated computing devices, aiming at schedules with low total energy consumption. While most of the previous work has focused on finding feasible schedules in deadlinebased settings, in this article we are interested in schedules that guarantee good response times. More specifically, our goal is to schedule a sequence of jobs on a variablespeed processor so as to minimize the total cost consisting of the energy consumption and the total flow time of all jobs. We first show that when the amount of work, for any job, may take an arbitrary value, then no online algorithm can achieve a constant competitive ratio. Therefore, most of the article is concerned with unitsize jobs. We devise a deterministic constant competitive online algorithm and show that
Optimal Search and OneWay Trading Online Algorithms
 ALGORITHMICA
, 2001
"... This paper is concerned with the time series search and oneway trading problems. In the (time series) search problem a player is searching for the maximum (or minimum) price in a sequence that unfolds sequentially, one price at a time. Once during this game the player can decide to accept the curre ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
This paper is concerned with the time series search and oneway trading problems. In the (time series) search problem a player is searching for the maximum (or minimum) price in a sequence that unfolds sequentially, one price at a time. Once during this game the player can decide to accept the current price p in which case the game ends and the player's payoff is p.Intheoneway trading problem a trader is given the task of trading dollars to yen. Each day, a new exchange rate is announced and the trader must decide how many dollars to convert to yen according to the current rate. The game ends when the trader trades his entire dollar wealth to yen and his payoff is the number of yen acquired. The search and oneway trading are intimately related. Any (deterministic or randomized) oneway trading algorithm can be viewed as a randomized search algorithm. Using the competitive ratio as a performance measure we determine the optimal competitive performance for several variants of these problems. In particular, we show that a simple threatbased strategy is optimal and we determine its competitive ratio which yields, for realistic values of the problem parameters, surprisingly low competitive ratios. We also consider and analyze a oneway trading game played against an adversary called Nature where the online player knows the probability distribution of the maximum exchange rate and that distribution has been chosen by Nature. Finally, we consider some applications for a special case of portfolio selection called twoway trading in which the trader may trade back and forth between cash and one asset.
Competitive Analysis of Financial Games
, 1992
"... In the unidirectional conversion problem an online player is given the task of converting dollars to yen over some period of time. Each day, a new exchange rate is announced, and the player must decide how many dollars to convert. His goal is to minimize the competitive ratio, defined as sup E POPT ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
In the unidirectional conversion problem an online player is given the task of converting dollars to yen over some period of time. Each day, a new exchange rate is announced, and the player must decide how many dollars to convert. His goal is to minimize the competitive ratio, defined as sup E POPT (E) PX (E) , where E ranges over exchange rate sequences, POPT (E) is the number of yen obtained by an optimal offline algorithm, and PX (E) is the number of yen obtained by the online algorithm X. We also consider a continuous version of the problem, in which the exchange rate varies over a continuous time interval. The online player's a priori information about the fluctuation of exchange rates distinguishes different variants of the problem. For three variants we show that a simple threatbased strategy is optimal for the online player and determine its competitive ratio. We also derive and analyze an optimal policy for the online player when he knows the probability distribution o...
Can we learn to beat the best stock
 Journal of Artificial Intelligence Research
, 2004
"... A novel algorithm for actively trading stocks is presented. While traditional universal algorithms (and technical trading heuristics) attempt to predict winners or trends, our approach relies on predictable statistical relations between all pairs of stocks in the market. Our empirical results on his ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A novel algorithm for actively trading stocks is presented. While traditional universal algorithms (and technical trading heuristics) attempt to predict winners or trends, our approach relies on predictable statistical relations between all pairs of stocks in the market. Our empirical results on historical markets provide strong evidence that this type of technical trading can “beat the market ” and moreover, can beat the best stock in the market. In doing so we utilize a new idea for smoothing critical parameters in the context of expert learning. 1
The Statistical Adversary Allows Optimal MoneyMaking Trading Strategies (Extended Abstract)
, 1993
"... Andrew Chou Jeremy Cooperstock y Ran ElYaniv z Michael Klugerman x Tom Leighton  November, 1993 Abstract The distributional approach and competitive analysis have traditionally been used for the design and analysis of online algorithms. The former assumes a specific distribution on inputs, whil ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
Andrew Chou Jeremy Cooperstock y Ran ElYaniv z Michael Klugerman x Tom Leighton  November, 1993 Abstract The distributional approach and competitive analysis have traditionally been used for the design and analysis of online algorithms. The former assumes a specific distribution on inputs, while the latter assumes inputs are chosen by an unrestricted adversary. This paper employs the statistical adversary (recently proposed by Raghavan) to analyze and design online algorithms for twoway currency trading. The statistical adversary approach may be viewed as a hybrid of the distributional approach and competitive analysis. By statistical adversary, we mean an adversary that generates input sequences, where each sequence must satisfy certain general statistical properties. The online algorithms presented in this paper have some very attractive properties. For instance, the algorithms are moneymaking; they are guaranteed to be profitable when the optimal offli...
Using Difficulty of Prediction to Decrease Computation: Fast Sort, Priority Queue and Convex Hull on Entropy Bounded Inputs
"... There is an upsurge in interest in the Markov model and also more general stationary ergodic stochastic distributions in theoretical computer science community recently (e.g. see [Vitter,KrishnanSl], [Karlin,Philips,Raghavan92], [Raghavan9 for use of Markov models for online algorithms, e.g., cashi ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
There is an upsurge in interest in the Markov model and also more general stationary ergodic stochastic distributions in theoretical computer science community recently (e.g. see [Vitter,KrishnanSl], [Karlin,Philips,Raghavan92], [Raghavan9 for use of Markov models for online algorithms, e.g., cashing and prefetching). Their results used the fact that compressible sources are predictable (and vise versa), and showed that online algorithms can improve their performance by prediction. Actual page access sequences are in fact somewhat compressible, so their predictive methods can be of benefit. This paper investigates the interesting idea of decreasing computation by using learning in the opposite way, namely to determine the difficulty of prediction. That is, we will ap proximately learn the input distribution, and then improve the performance of the computation when the input is not too predictable, rather than the reverse. To our knowledge,
Competitive solutions for online financial problems
 ACM Comput. Surv
, 1998
"... This article surveys results concerning online algorithms for solving problems related to the management of money and other assets. In particular, the survey focuses on search, replacement, and portfolio selection problems. ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
This article surveys results concerning online algorithms for solving problems related to the management of money and other assets. In particular, the survey focuses on search, replacement, and portfolio selection problems.