Results 1 
4 of
4
Ununfoldable polyhedra with convex faces
 COMPUT. GEOM. THEORY APPL
, 2002
"... Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex fa ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not be unfoldable no matter how they are cut.
Ununfoldable Polyhedra
, 1999
"... A wellstudied problem is that of unfolding a convex polyhedron into a simple planar polygon. In this paper, we study the limits of unfoldability. We give an example of a polyhedron with convex faces that cannot be unfolded by cutting along its edges. We further show that such a polyhedron can inde ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
A wellstudied problem is that of unfolding a convex polyhedron into a simple planar polygon. In this paper, we study the limits of unfoldability. We give an example of a polyhedron with convex faces that cannot be unfolded by cutting along its edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that "open" polyhedra with convex faces may not be unfoldable no matter how they are cut.
Local overlaps in special unfoldings of convex polyhedra
 In Proc. 18th Canad. Conf. Comput. Geom
, 2006
"... We define a notion of local overlaps in polyhedron unfoldings. We use this concept to construct convex polyhedra for which certain classes of edge unfoldings contain overlaps, thereby negatively resolving some open conjectures. In particular, we construct a convex polyhedron for which every shortest ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We define a notion of local overlaps in polyhedron unfoldings. We use this concept to construct convex polyhedra for which certain classes of edge unfoldings contain overlaps, thereby negatively resolving some open conjectures. In particular, we construct a convex polyhedron for which every shortest path unfolding contains an overlap. We also present a convex polyhedron for which every steepest edge unfolding contains an overlap. We conclude by analyzing a broad class of unfoldings and again find a convex polyhedron for which they all contain overlaps. 1