Results 1 
6 of
6
Folding and Unfolding in Computational Geometry
"... Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain ..."
Abstract

Cited by 54 (4 self)
 Add to MetaCart
Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain be straightened?
Ununfoldable polyhedra with convex faces
 COMPUT. GEOM. THEORY APPL
, 2002
"... Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex fa ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not be unfoldable no matter how they are cut.
Folding and Unfolding
 in Computational Geometry. 2004. Monograph in preparation
, 2001
"... author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, and for that wonderful experience I owe many thanks. I had two excellent advisors, Anna Lubiw and Ian Munro. I started working with Anna after I took her two classes on algorithms and computational geometry during my Master’s, which got me excited about both these areas, and even caused me to switch entire fields of computer science, from distributed systems to theory and algorithms. Anna introduced me to Ian when some of our problems in computational geometry turned out to have large data structural components, and my work with Ian blossomed from there. The sets of problems I worked on with Anna and Ian diverged, and both remain my primary interests. Anna and Ian have had a profound influence throughout my academic career. At the most
Enumerating foldings and unfoldings between polygons and polytopes
 Graphs Comb
"... Abstract. We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infi ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
Abstract. We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite. 1
The Foldings of a Square to Convex Polyhedra
"... Abstract. The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of polyhedra having the topology of four connected rings. 1
Common EdgeUnzippings for Tetrahedra
, 2011
"... It is shown that there are examples of distinct polyhedra, each with a Hamiltonian path of edges, which when cut, unfolds the surfaces to a common net. In particular, it is established for infinite classes of triples of tetrahedra. 1 ..."
Abstract
 Add to MetaCart
It is shown that there are examples of distinct polyhedra, each with a Hamiltonian path of edges, which when cut, unfolds the surfaces to a common net. In particular, it is established for infinite classes of triples of tetrahedra. 1