Results 1  10
of
40
A lambdacalculus à la de Bruijn with explicit substitutions
, 1995
"... The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by tra ..."
Abstract

Cited by 78 (26 self)
 Add to MetaCart
The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by translating it into the oecalculus [ACCL91], and therefore the relation between both calculi will be made explicit. The confluence of the scalculus is obtained by the "interpretation method" ([Har89], [CHL92]). The proof of the preservation of normalisation follows the lines of an analogous result for the AEcalculus (cf. [BBLRD95]). The relation between s and AE is also studied.
Preservation of Strong Normalisation in Named Lambda Calculi with Explicit Substitution and Garbage Collection
 IN CSN95: COMPUTER SCIENCE IN THE NETHERLANDS
, 1995
"... In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rul ..."
Abstract

Cited by 65 (7 self)
 Add to MetaCart
In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rules for explicit garbage collection; this simplifies several proofs. We show that lambdaxgc is a conservative extension which preserves strong normalisation (PSN) of the untyped lambdacalculus. The result is obtained in a modular way by first proving it for garbagefree reduction and then extending to `reductions in garbage'. This provides insight into the counterexample to PSN for lambdasigma of Melliès (1995); we exploit the abstract nature of lambdaxgc to show how PSN is in conflict with any reasonable substitution composition rule (except for trivial composition rules of which we mention one). Key words: lambda calculus, explicit substitution, strong normalisation, garbage collection.
Explicit Substitution: on the Edge of Strong Normalization
 Theoretical Computer Science
, 1997
"... We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preservation of Strong Normalization (PSN) property for several calculi of explicit substitution. Preservation of Strong Normalization states that if a term M is strongly normalizing under ordinary fireduction (us ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preservation of Strong Normalization (PSN) property for several calculi of explicit substitution. Preservation of Strong Normalization states that if a term M is strongly normalizing under ordinary fireduction (using `global' substitutions), then it is strongly normalizing if the substitution is made explicit (`local'). There are different ways of making global substitution explicit and PSN is a quite natural and desirable property for the explicit substitution calculus. Our method for proving PSN is very general and applies to several known systems of explicit substitutions, both with named variables and with De Bruijn indices: AE of Lescanne et al., s of Kamareddine and R'ios and x of Rose and Bloo. We also look at two small extensions of the explicit substitution calculus that allow to permute substitutions. For one of these extensions PSN fails (using the counterexample in [Melli`es 95]). For the...
lambdacalculi with explicit substitutions and composition which preserve beta strong normalization (Extended Abstract)
, 1996
"... ) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cede ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cedex, France, fkesner,puelg@lri.fr. Abstract. We study preservation of fistrong normalization by d and dn , two confluent calculi with explicit substitutions defined in [10]; the particularity of these calculi is that both have a composition operator for substitutions. We develop an abstract simulation technique allowing to reduce preservation of fistrong normalization of one calculus to that of another one, and apply said technique to reduce preservation of fistrong normalization of d and dn to that of f , another calculus having no composition operator. Then, preservation of fistrong normalization of f is shown using the same technique as in [2]. As a consequence, d and dn become the fir...
Confluence Properties of Extensional and NonExtensional lambdaCalculi with Explicit Substitutions (Extended Abstract)
 in Proceedings of the Seventh International Conference on Rewriting Techniques and Applications
, 1996
"... ) Delia Kesner CNRS and LRI, B at 490, Universit e ParisSud  91405 Orsay Cedex, France. email:Delia.Kesner@lri.fr Abstract. This paper studies confluence properties of extensional and nonextensional #calculi with explicit substitutions, where extensionality is interpreted by #expansion. For ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
) Delia Kesner CNRS and LRI, B at 490, Universit e ParisSud  91405 Orsay Cedex, France. email:Delia.Kesner@lri.fr Abstract. This paper studies confluence properties of extensional and nonextensional #calculi with explicit substitutions, where extensionality is interpreted by #expansion. For that, we propose a general scheme for explicit substitutions which describes those abstract properties that are sufficient to guarantee confluence. Our general scheme makes it possible to treat at the same time many wellknown calculi such as ## , ## # and ## , or some other new calculi that we propose in this paper. We also show for those calculi not fitting in the general scheme that can be translated to another one fitting the scheme, such as #s , how to reason about confluence properties of their extensional and nonextensional versions. 1 Introduction The #calculus is a convenient framework to study functional programming, where the evaluation process is modeled by #reduction. The...
Strong Normalization of Explicit Substitutions via Cut Elimination in Proof Nets
, 1997
"... In this paper, we show the correspondence existing between normalization in calculi with explicit substitution and cut elimination in sequent calculus for Linear Logic, via Proof Nets. This correspondence allows us to prove that a typed version of the #xcalculus [30, 29] is strongly normalizing, as ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
In this paper, we show the correspondence existing between normalization in calculi with explicit substitution and cut elimination in sequent calculus for Linear Logic, via Proof Nets. This correspondence allows us to prove that a typed version of the #xcalculus [30, 29] is strongly normalizing, as well as of all the calculi isomorphic to it such as # # [24], # s [19], # d [21], and # f [11]. In order to achieve this result, we introduce a new notion of reduction in Proof Nets: this extended reduction is still confluent and strongly normalizing, and is of interest of its own, as it correspond to more identifications of proofs in Linear Logic that differ by inessential details. These results show that calculi with explicit substitutions are really an intermediate formalism between lambda calculus and proof nets, and suggest a completely new way to look at the problems still open in the field of explicit substitutions.
Subtractive Logic
, 1999
"... This paper is the first part of a work whose purpose is to investigate duality in some related frameworks (cartesian closed categories, lambdacalculi, intuitionistic and classical logics) from syntactic, semantical and computational viewpoints. We start with category theory and we show that any ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
This paper is the first part of a work whose purpose is to investigate duality in some related frameworks (cartesian closed categories, lambdacalculi, intuitionistic and classical logics) from syntactic, semantical and computational viewpoints. We start with category theory and we show that any bicartesian closed category with coexponents is degenerated (i.e. there is at most one arrow between two objects). The remainder of the paper is devoted to logical issues. We examine the propositional calculus underlying the type system of bicartesian closed categories with coexponents and we show that this calculus corresponds to subtractive logic: a conservative extension of intuitionistic logic with a new connector (subtraction) dual to implication. Eventually, we consider first order subtractive logic and we present an embedding of classical logic into subtractive logic. Introduction This paper is the first part of a work whose purpose is to investigate duality in some related ...
Intersection types for explicit substitutions
, 2003
"... We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical inte ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical intersection types system, which characterized head normalization and weak normalization, but was not complete for strong normalization. An important role is played by the notion of available variable in a term, which is a generalization of the classical notion of free variable.
Preservation of Strong Normalisation for Explicit Substitution
, 1995
"... this paper is different and has been invented independently of the proofs in [Kamareddine & Rios 95] and [BBLR 95]. We show by means of a counterexample that an extension of exp with certain interaction between substitutions does not preserve strong normalisation. In appendix A we use a more common ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
this paper is different and has been invented independently of the proofs in [Kamareddine & Rios 95] and [BBLR 95]. We show by means of a counterexample that an extension of exp with certain interaction between substitutions does not preserve strong normalisation. In appendix A we use a more common notation trying to determine the borderline between preservation of strong normalisation and interaction of substitutions. 2 The calculus