Results 1  10
of
68
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or diffe ..."
Abstract

Cited by 389 (32 self)
 Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or differential equations, which are verified through computer simulations. The analysis provides convenient approximate or exact solutions as well as useful convergence time and growth ratio estimates. The paper recommends practical application of the analyses and suggests a number of paths for more detailed analytical investigation of selection techniques. Keywords: proportionate selection, ranking selection, tournament selection, Genitor, takeover time, time complexity, growth ratio. 1
Genetic Algorithms, Noise, and the Sizing of Populations
 COMPLEX SYSTEMS
, 1991
"... This paper considers the effect of stochasticity on the quality of convergence of genetic algorithms (GAs). In many problems, the variance of buildingblock fitness or socalled collateral noise is the major source of variance, and a populationsizing equation is derived to ensure that average sig ..."
Abstract

Cited by 239 (85 self)
 Add to MetaCart
This paper considers the effect of stochasticity on the quality of convergence of genetic algorithms (GAs). In many problems, the variance of buildingblock fitness or socalled collateral noise is the major source of variance, and a populationsizing equation is derived to ensure that average signaltocollateralnoise ratios are favorable to the discrimination of the best building blocks required to solve a problem of bounded deception. The sizing relation is modified to permit the inclusion of other sources of stochasticity, such as the noise of selection, the noise of genetic operators, and the explicit noise or nondeterminism of the objective function. In a test suite of five functions, the sizing relation proves to be a conservative predictor of average correct convergence, as long as all major sources of noise are considered in the sizing calculation. These results suggest how the sizing equation may be viewed as a coarse delineation of a boundary between what a physicist might call two distinct phases of GA behavior. At low population sizes the GA makes many errors of decision, and the quality of convergence is largely left to the vagaries of chance or the serial fixup of flawed results through mutation or other serial injection of diversity. At large population sizes, GAs can reliably discriminate between good and bad building blocks, and parallel processing and recombination of building blocks lead to quick solution of even difficult deceptive problems. Additionally, the paper outlines a number of extensions to this work, including the development of more refined models of the relation between generational average error and ultimate convergence quality, the development of online methods for sizing populations via the estimation of populations...
Designing Efficient And Accurate Parallel Genetic Algorithms
, 1999
"... Parallel implementations of genetic algorithms (GAs) are common, and, in most cases, they succeed to reduce the time required to find acceptable solutions. However, the effect of the parameters of parallel GAs on the quality of their search and on their efficiency are not well understood. This insuf ..."
Abstract

Cited by 220 (5 self)
 Add to MetaCart
Parallel implementations of genetic algorithms (GAs) are common, and, in most cases, they succeed to reduce the time required to find acceptable solutions. However, the effect of the parameters of parallel GAs on the quality of their search and on their efficiency are not well understood. This insufficient knowledge limits our ability to design fast and accurate parallel GAs that reach the desired solutions in the shortest time possible. The goal of this dissertation is to advance the understanding of parallel GAs and to provide rational guidelines for their design. The research reported here considered three major types of parallel GAs: simple masterslave algorithms with one population, more sophisticated algorithms with multiple populations, and a hierarchical combination of the first two types. The investigation formulated simple models that predict accurately the quality of the solutions with different parameter settings. The quality predictors were transformed into populationsizing equations, which in turn were used to estimate the execution time of the algorithms.
The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations
, 1997
"... This paper presents a model for predicting the convergence quality of genetic algorithms. The model incorporates previous knowledge about decision making in genetic algorithms and the initial supply of building blocks in a novel way. The result is an equation that accurately predicts the quality of ..."
Abstract

Cited by 210 (88 self)
 Add to MetaCart
This paper presents a model for predicting the convergence quality of genetic algorithms. The model incorporates previous knowledge about decision making in genetic algorithms and the initial supply of building blocks in a novel way. The result is an equation that accurately predicts the quality of the solution found by a GA using a given population size. Adjustments for different selection intensities are considered and computational experiments demonstrate the effectiveness of the model. I. Introduction The size of the population in a genetic algorithm (GA) is a major factor in determining the quality of convergence. The question of how to choose an adequate population size for a particular domain is difficult and has puzzled GA practitioners for a long time. Hard questions are better approached using a divideandconquer strategy and the population sizing issue is no exception. In this case, we can identify two factors that influence convergence quality: the initial supply of build...
Evaluationrelaxation schemes for genetic and evolutionary algorithms
, 2002
"... Genetic and evolutionary algorithms have been increasingly applied to solve complex, large scale search problems with mixed success. Competent genetic algorithms have been proposed to solve hard problems quickly, reliably and accurately. They have rendered problems that were difficult to solve by th ..."
Abstract

Cited by 60 (28 self)
 Add to MetaCart
Genetic and evolutionary algorithms have been increasingly applied to solve complex, large scale search problems with mixed success. Competent genetic algorithms have been proposed to solve hard problems quickly, reliably and accurately. They have rendered problems that were difficult to solve by the earlier GAs to be solvable, requiring only a subquadratic number of function evaluations. To facilitate solving largescale complex problems, and to further enhance the performance of competent GAs, various efficiencyenhancement techniques have been developed. This study investigates one such class of efficiencyenhancement technique called evaluation relaxation. Evaluationrelaxation schemes replace a highcost, lowerror fitness function with a lowcost, higherror fitness function. The error in fitness functions comes in two flavors: Bias and variance. The presence of bias and variance in fitness functions is considered in isolation and strategies for increasing efficiency in both cases are developed. Specifically, approaches for choosing between two fitness functions with either differing variance or differing bias values have been developed. This thesis also investigates fitness inheritance as an evaluation
Molecular Modeling Of Proteins And Mathematical Prediction Of Protein Structure
 SIAM Review
, 1997
"... . This paper discusses the mathematical formulation of and solution attempts for the socalled protein folding problem. The static aspect is concerned with how to predict the folded (native, tertiary) structure of a protein, given its sequence of amino acids. The dynamic aspect asks about the possib ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
. This paper discusses the mathematical formulation of and solution attempts for the socalled protein folding problem. The static aspect is concerned with how to predict the folded (native, tertiary) structure of a protein, given its sequence of amino acids. The dynamic aspect asks about the possible pathways to folding and unfolding, including the stability of the folded protein. From a mathematical point of view, there are several main sides to the static problem:  the selection of an appropriate potential energy function;  the parameter identification by fitting to experimental data; and  the global optimization of the potential. The dynamic problem entails, in addition, the solution of (because of multiple time scales very stiff) ordinary or stochastic differential equations (molecular dynamics simulation), or (in case of constrained molecular dynamics) of differentialalgebraic equations. A theme connecting the static and dynamic aspect is the determination and formation of...
On The Supply Of Building Blocks
 Proceedings of the Genetic and Evolutionary Computation Conference
, 2001
"... This study addresses the issue of buildingblock supply in the initial population. ..."
Abstract

Cited by 26 (14 self)
 Add to MetaCart
This study addresses the issue of buildingblock supply in the initial population.
Using Time Efficiently: GeneticEvolutionary Algorithms and the Continuation Problem
"... This paper develops a macrolevel theory of efficient time utilization for genetic and evolutionary algorithms. Building on population sizing results that estimate the critical relationship between solution quality and time, the paper considers the tradeoff between large populations that converge in ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
This paper develops a macrolevel theory of efficient time utilization for genetic and evolutionary algorithms. Building on population sizing results that estimate the critical relationship between solution quality and time, the paper considers the tradeoff between large populations that converge in a single convergence epoch and smaller populations with multiple epochs. Two models suggest a link between the salience structure of a problem and the appropriate populationtime configuration for best efficiency.
Current trends in deterministic scheduling
 ANNALS OF OPERATIONS RESEARCH
, 1997
"... Scheduling is concerned with allocating limited resources to tasks to optimize certain objective functions. Due to the popularity of the Total Quality Management concept, ontime delivery of jobs has become one of the crucial factors for customer satisfaction. Scheduling plays an important role in ac ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Scheduling is concerned with allocating limited resources to tasks to optimize certain objective functions. Due to the popularity of the Total Quality Management concept, ontime delivery of jobs has become one of the crucial factors for customer satisfaction. Scheduling plays an important role in achieving this goal. Recent developments in scheduling theory have focused on extending the models to include more practical constraints. Furthermore, due to the complexity studies conducted during the last two decades, it is now widely understood that most practical problems are NPhard. This is one of the reasons why local search methods have been studied so extensively during the last decade. In this paper, we review briefly some of the recent extensions of scheduling theory, the recent developments in local search techniques and the new developments of scheduling in practice. Particularly, we survey two recent extensions of theory: scheduling with a 1jobonrmachine pattern and machine scheduling with availability constraints. We also review several local search techniques, including simulated annealing, tabu search, genetic algorithms and constraint guided heuristic search. Finally, we study the robotic cell scheduling problem, the automated guided vehicles scheduling problem, and the hoist scheduling problem.
A review of adaptive population sizing schemes in genetic algorithms
 In Proceedings of the 2005 Workshop on Parameter Setting in Genetic and Evolutionary Algorithms (PSGEA 2005), part of GECCO
, 2005
"... This paper reviews the topic of population sizing in genetic algorithms. It starts by revisiting theoretical models which rely on a facetwise decomposition of genetic algorithms, and then moves on to various selfadjusting population sizing schemes that have been proposed in the literature. The pape ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
This paper reviews the topic of population sizing in genetic algorithms. It starts by revisiting theoretical models which rely on a facetwise decomposition of genetic algorithms, and then moves on to various selfadjusting population sizing schemes that have been proposed in the literature. The paper ends with recommendations for those who design and compare adaptive population sizing schemes for genetic algorithms.