Results 1 
1 of
1
Radial Level Planarity Testing and Embedding in Linear Time
 Journal of Graph Algorithms and Applications
, 2005
"... A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines an ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines and the edges are routed strictly downwards without crossings. The extension is characterised by rings, which are level nonplanar biconnected components. Our main results are linear time algorithms for radial level planarity testing and for computing an embedding. We introduce PQRtrees as a new data structure where Rnodes and associated templates for their manipulation are introduced to deal with rings. Our algorithms extend level planarity testing and embedding algorithms which use PQtrees.