Results 1 
2 of
2
Apartness spaces as framework for constructive topology
 Ann. Pure Appl. Logic
, 2003
"... An axiomatic development of the theory of apartness and nearness of a point and a set is introduced as a framework for constructive topology. Various notions of continuity of mappings between apartness spaces are compared; the constructive independence of one of the axioms from the others is demonst ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
An axiomatic development of the theory of apartness and nearness of a point and a set is introduced as a framework for constructive topology. Various notions of continuity of mappings between apartness spaces are compared; the constructive independence of one of the axioms from the others is demonstrated; and the product apartness structure is defined and analysed.
Constructive Mathematics, in Theory and Programming Practice
, 1997
"... The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on MartinLof's theory of types as a formal system for BISH.