Results 1 
3 of
3
Inductive invariants for nested recursion
 Theorem Proving in Higher Order Logics (TPHOLS'03), volume 2758 of LNCS
, 2003
"... Abstract. We show that certain inputoutput relations, termed inductive invariants are of central importance for termination proofs of algorithms defined by nested recursion. Inductive invariants can be used to enhance recursive function definition packages in higherorder logic mechanizations. We d ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Abstract. We show that certain inputoutput relations, termed inductive invariants are of central importance for termination proofs of algorithms defined by nested recursion. Inductive invariants can be used to enhance recursive function definition packages in higherorder logic mechanizations. We demonstrate the usefulness of inductive invariants on a large example of the BDD algorithm Apply. Finally, we introduce a related concept of inductive fixpoints with the property that for every functional in higherorder logic there exists a largest partial function that is such a fixpoint. 1
Under consideration for publication in Math. Struct. in Comp. Science Partiality and Recursion in Interactive Theorem Provers — An Overview
, 2011
"... The use of interactive theorem provers to establish the correctness of critical parts of a software development or for formalising mathematics is becoming more common and feasible in practice. However, most mature theorem provers lack a direct treatment of partial and general recursive functions; ov ..."
Abstract
 Add to MetaCart
The use of interactive theorem provers to establish the correctness of critical parts of a software development or for formalising mathematics is becoming more common and feasible in practice. However, most mature theorem provers lack a direct treatment of partial and general recursive functions; overcoming this weakness has been the objective of intensive research during the last decades. In this article, we review many techniques that have been proposed in the literature to simplify the formalisation of partial and general recursive functions in interactive theorem provers. Moreover, we classify the techniques according to their theoretical basis and their practical use. This uniform presentation of the different techniques facilitates the comparison and highlights their commonalities and differences, as well as their relative advantages and limitations. We focus on theorem provers based on constructive type theory (in particular, Agda and Coq) and higherorder logic (in particular Isabelle/HOL). Other systems and logics are covered to a certain extend, but not exhaustively. In addition to the description of the techniques, we also demonstrate tools which facilitate working with the problematic functions in particular theorem provers. 1.
Under consideration for publication in Math. Struct. in Comp. Science Partiality and Recursion in Interactive Theorem Provers — An Overview
, 2011
"... The use of interactive theorem provers to establish the correctness of critical parts of a software development or for formalising mathematics is becoming more common and feasible in practice. However, most mature theorem provers lack a direct treatment of partial and general recursive functions; ov ..."
Abstract
 Add to MetaCart
The use of interactive theorem provers to establish the correctness of critical parts of a software development or for formalising mathematics is becoming more common and feasible in practice. However, most mature theorem provers lack a direct treatment of partial and general recursive functions; overcoming this weakness has been the objective of intensive research during the last decades. In this article, we review several techniques that have been proposed in the literature to simplify the formalisation of partial and general recursive functions in interactive theorem provers. Moreover, we classify the techniques according to their theoretical basis and their practical use. This uniform presentation of the different techniques facilitates the comparison and highlights their commonalities and differences, as well as their relative advantages and limitations. We focus on theorem provers based on constructive type theory (in particular, Agda and Coq) and higherorder logic (in particular Isabelle/HOL). Other systems and logics are covered to a certain extent, but not exhaustively. In addition to the description of the techniques, we also demonstrate tools which facilitate working with the problematic functions in particular theorem provers. 1.