Results 1 
2 of
2
Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine
, 2004
"... In magnetic resonance imaging, the raw data, which are acquired in spatial frequency space, are intrinsically complex valued and corrupted by Gaussian distributed noise. After applying an inverse Fourier transform the data remain complex valued and Gaussian distributed. If the signal amplitude is t ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
In magnetic resonance imaging, the raw data, which are acquired in spatial frequency space, are intrinsically complex valued and corrupted by Gaussian distributed noise. After applying an inverse Fourier transform the data remain complex valued and Gaussian distributed. If the signal amplitude is to be estimated, one has two options. It can be estimated directly from the complex valued data set, or one can first perform a magnitude operation on this data set, which changes the distribution of the data from Gaussian to Rician, and estimate the signal amplitude from the thus obtained magnitude image. Similarly, the noise variance can be estimated from both the complex and magnitude data sets. This paper addresses the question whether it is better to use complex valued data or magnitude data for the estimation of these parameters using the Maximum Likelihood method. As a performance criterion, the meansquared error (MSE) is used. 1
Maximum Likelihood estimation of signal
 Magn Reson Med
, 2004
"... In magnetic resonance imaging, the raw data, which are acquired in spatial frequency space, are intrinsically complex valued and corrupted by Gaussian distributed noise. After applying an inverse Fourier transform the data remain complex valued and Gaussian distributed. If the signal amplitude is ..."
Abstract
 Add to MetaCart
In magnetic resonance imaging, the raw data, which are acquired in spatial frequency space, are intrinsically complex valued and corrupted by Gaussian distributed noise. After applying an inverse Fourier transform the data remain complex valued and Gaussian distributed. If the signal amplitude is to be estimated, one has two options. It can be estimated directly from the complex valued data set, or one can first perform a magnitude operation on this data set, which changes the distribution of the data from Gaussian to Rician, and estimate the signal amplitude from the thus obtained magnitude image. Similarly, the noise variance can be estimated from both the complex and magnitude data sets.