Results 1  10
of
37
Recursion Theory on the Reals and Continuoustime Computation
 Theoretical Computer Science
, 1995
"... We define a class of recursive functions on the reals analogous to the classical recursive functions on the natural numbers, corresponding to a conceptual analog computer that operates in continuous time. This class turns out to be surprisingly large, and includes many functions which are uncomp ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
We define a class of recursive functions on the reals analogous to the classical recursive functions on the natural numbers, corresponding to a conceptual analog computer that operates in continuous time. This class turns out to be surprisingly large, and includes many functions which are uncomputable in the traditional sense.
The complexity of analog computation
 in Math. and Computers in Simulation 28(1986
"... We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP w ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP we can draw conclusions about the operation of physical devices used for computation. An NPcomplete problem, 3SAT, is reduced to the problem of checking whether a feasible point is a local optimum of an optimization problem. A mechanical device is proposed for the solution of this problem. It encodes variables as shaft angles and uses gears and smooth cams. If we grant Strong Church’s Thesis, that P ≠ NP, and a certain ‘‘Downhill Principle’ ’ governing the physical behavior of the machine, we conclude that it cannot operate successfully while using only polynomial resources. We next prove Strong Church’s Thesis for a class of analog computers described by wellbehaved ordinary differential equations, which we can take as representing part of classical mechanics. We conclude with a comment on the recently discovered connection between spin glasses and combinatorial optimization. 1.
Analog computers and recursive functions over the reals
 Journal of Complexity
, 2003
"... In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these mode ..."
Abstract

Cited by 34 (19 self)
 Add to MetaCart
In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these models have drawbacks and we introduce an alternative continuoustime model of computation that solve these problems. We also show that this new model preserve all the significant relations involving the previous models (namely, the equivalence with the differentially algebraic functions). We then continue with the topic of recursive functions over the reals, and we show full connections between functions generated by the model introduced so far and a particular class of recursive functions over the reals. 1
A Survey of ContinuousTime Computation Theory
 Advances in Algorithms, Languages, and Complexity
, 1997
"... Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists o ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists on the general theory of continuoustime models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. 1 Introduction After a long period of oblivion, interest in analog computation is again on the rise. The immediate cause for this new wave of activity is surely the success of the neural networks "revolution", which has provided hardware designers with several new numerically based, computationally interesting models that are structurally sufficiently simple to be implemented directly in silicon. (For designs and actual implementations of neural models in VLSI, see e.g. [30, 45]). However, the more fundamental...
Polynomial differential equations compute all real computable functions on computable compact intervals
, 2007
"... ..."
Analog Computation with Dynamical Systems
 Physica D
, 1997
"... This paper presents a theory that enables to interpret natural processes as special purpose analog computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for continuous time systems is required. In analogy with the classical discrete th ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
This paper presents a theory that enables to interpret natural processes as special purpose analog computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for continuous time systems is required. In analogy with the classical discrete theory we develop fundamentals of computational complexity for dynamical systems, discrete or continuous in time, on the basis of an intrinsic time scale of the system. Dissipative dynamical systems are classified into the computational complexity classes P d , CoRP d , NP d
Computability with Polynomial Differential Equations
, 2007
"... In this paper, we show that there are Initial Value Problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time. ..."
Abstract

Cited by 20 (13 self)
 Add to MetaCart
In this paper, we show that there are Initial Value Problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time.
Some recent developments on Shannon’s general purpose analog computer
 Mathematical Logic Quarterly
"... This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be simplified; (ii) it admits extensions having close connections with the class of smooth continuous time dynamical systems. As a consequence, we conclude that some of these extensions achieve Turing universality. Finally, it is shown that if we introduce a new notion of computability for the GPAC, based on ideas from computable analysis, then one can compute transcendentally transcendental functions such as the Gamma function or Riemann’s Zeta function. 1
Natural computation and nonTuring models of computation
 Theoretical Computer Science
, 2004
"... We propose certain nonTuring models of computation, but our intent is not to advocate models that surpass the power of Turing Machines (TMs), but to defend the need for models with orthogonal notions of power. We review the nature of models and argue that they are relative to a domain of applicatio ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
We propose certain nonTuring models of computation, but our intent is not to advocate models that surpass the power of Turing Machines (TMs), but to defend the need for models with orthogonal notions of power. We review the nature of models and argue that they are relative to a domain of application and are illsuited to use outside that domain. Hence we review the presuppositions and context of the TM model and show that it is unsuited to natural computation (computation occurring in or inspired by nature). Therefore we must consider an expanded definition of computation that includes alternative (especially analog) models as well as the TM. Finally we present an alternative model, of continuous computation, more suited to natural computation. We conclude with remarks on the expressivity of formal mathematics. Key words: analog computation, analog computer, biocomputation, computability, computation on reals, continuous computation, formal system, hypercomputation,
Real recursive functions and their hierarchy
, 2004
"... ... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators introduced in the seminal paper by Moore (1996), the minimalization operator, has not been considered: (a) although differential recursion (the analog counterpart of classical recurrence) is, in some extent, directly implementable in the General Purpose Analog Computer of Claude Shannon, analog minimalization is far from physical realizability, and (b) analog minimalization was borrowed from classical recursion theory and does not fit well the analytic realm of analog computation. In this paper, we show that a most natural operator captured from analysis—the operator of taking a limit—can be used properly to enhance the theory of recursion over the reals, providing good solutions to puzzling problems raised by the original model.