Results 1  10
of
46
Numerica: a Modeling Language for Global Optimization
, 1997
"... Introduction Many science and engineering applications require the user to find solutions to systems of nonlinear constraints over real numbers or to optimize a nonlinear function subject to nonlinear constraints. This includes applications such the modeling of chemical engineering processes and of ..."
Abstract

Cited by 170 (11 self)
 Add to MetaCart
Introduction Many science and engineering applications require the user to find solutions to systems of nonlinear constraints over real numbers or to optimize a nonlinear function subject to nonlinear constraints. This includes applications such the modeling of chemical engineering processes and of electrical circuits, robot kinematics, chemical equilibrium problems, and design problems (e.g., nuclear reactor design). The field of global optimization is the study of methods to find all solutions to systems of nonlinear constraints and all global optima to optimization problems. Nonlinear problems raise many issues from a computation standpoint. On the one hand, deciding if a set of polynomial constraints has a solution is NPhard. In fact, Canny [ Canny, 1988 ] and Renegar [ Renegar, 1988 ] have shown that the problem is in PSPACE and it is not known whether the problem lies in NP. Nonlinear programming problems can be so hard that some methods are designed only to solve probl
CLP(Intervals) Revisited
, 1994
"... The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedu ..."
Abstract

Cited by 121 (18 self)
 Add to MetaCart
The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedures to be applied in the solver. This idea is embodied in a new CLP language Newton whose operational semantics is based on the notion of boxconsistency, an approximation of arcconsistency, and whose implementation uses Newton interval method. Experimental results indicate that Newton outperforms existing languages by an order of magnitude and is competitive with some stateoftheart tools on some standard benchmarks. Limitations of our current implementation and directions for further work are also identified.
Solving Polynomial Systems Using a Branch and Prune Approach
 SIAM Journal on Numerical Analysis
, 1997
"... This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in ..."
Abstract

Cited by 101 (7 self)
 Add to MetaCart
This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in enforcing at each node of the search tree a unique local consistency condition, called boxconsistency, which approximates the notion of arcconsistency wellknown in artificial intelligence. Boxconsistency is parametrized by an interval extension of the constraint and can be instantiated to produce the HansenSegupta's narrowing operator (used in interval methods) as well as new operators which are more effective when the computation is far from a solution. Newton has been evaluated on a variety of benchmarks from kinematics, chemistry, combustion, economics, and mechanics. On these benchmarks, it outperforms the interval methods we are aware of and compares well with stateoftheart continuation methods. Limitations of Newton (e.g., a sensitivity to the size of the initial intervals on some problems) are also discussed. Of particular interest is the mathematical and programming simplicity of the method.
A Review of Preconditioners for the Interval GaussSeidel Method
, 1991
"... . Interval Newton methods in conjunction with generalized bisection can form the basis of algorithms that find all real roots within a specified box X ae R n of a system of nonlinear equations F (X) = 0 with mathematical certainty, even in finiteprecision arithmetic. In such methods, the system ..."
Abstract

Cited by 50 (16 self)
 Add to MetaCart
. Interval Newton methods in conjunction with generalized bisection can form the basis of algorithms that find all real roots within a specified box X ae R n of a system of nonlinear equations F (X) = 0 with mathematical certainty, even in finiteprecision arithmetic. In such methods, the system F (X) = 0 is transformed into a linear interval system 0 = F (M) +F 0 (X)( ~ X \Gamma M); if interval arithmetic is then used to bound the solutions of this system, the resulting box ~ X contains all roots of the nonlinear system. We may use the interval GaussSeidel method to find these solution bounds. In order to increase the overall efficiency of the interval Newton / generalized bisection algorithm, the linear interval system is multiplied by a preconditioner matrix Y before the interval GaussSeidel method is applied. Here, we review results we have obtained over the past few years concerning computation of such preconditioners. We emphasize importance and connecting relationships,...
Some tests of generalized bisection
 ACM Trans. Math. Software
, 1987
"... This paper addresses the task of reliably finding approximations to all solutions to a system of nonlinear equations within a region defined by bounds on each of the individual coordinates. Various forms of generalized bisection were proposed some time ago for this task. This paper systematically co ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
This paper addresses the task of reliably finding approximations to all solutions to a system of nonlinear equations within a region defined by bounds on each of the individual coordinates. Various forms of generalized bisection were proposed some time ago for this task. This paper systematically compares such generalized bisection algorithms to themselves, to continuation methods, and to hybrid steepest descent/quasiNewton methods. A specific algorithm containing novel “expansion ” and “exclusion ” steps is fully described, and the effectiveness of these steps is evaluated. A test problem consisting of a small, highdegree polynomial system that is appropriate for generalized bisection, but very difticult for continuation methods, is presented. This problem forms part of a set of 17 test problems from published literature on the methods being compared; this test set is fully described here.
Interval constraint logic programming
 CONSTRAINT PROGRAMMING: BASICS AND TRENDS, VOLUME 910 OF LNCS
, 1995
"... Abstract. In this paper, we present anoverview on the use of interval arithmetic to process numerical constraints in Constraint Logic Programming. The main principle is to approximate nary relations over IR with Cartesian products of intervals whose bounds are taken in a nite subset of I R.Variabl ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
Abstract. In this paper, we present anoverview on the use of interval arithmetic to process numerical constraints in Constraint Logic Programming. The main principle is to approximate nary relations over IR with Cartesian products of intervals whose bounds are taken in a nite subset of I R.Variables represent real values whose domains are intervals de ned in the same manner. Narrowing operators are de ned from approximations. These operators compute, from an interval and a relation, aset included in the initial interval. Sets of constraints are then processed thanks to a local consistency algorithm pruning at each stepvalues from initial intervals. This algorithm is shown to be correct and to terminate, on the basis of a certain number of properties of narrowing operators. We focus here on the description of the general framework based on approximations, on its application to interval constraint solving over continuous and discrete quantities, we establish a strong link between approximations and local consistency notions and show that arcconsistency is an instance of the approximation framework. We nally describe recentwork on di erent variants of the initial algorithm proposed by John Cleary and developed by W. Older and A. Vellino which havebeen proposed in this context. These variants address four particular points: generalization of the constraint language, improvement of domain reductions, e ciency of the computation and nally, cooperation with other solvers. Some open questions are also identi ed. 1
Robust Process Simulation Using Interval Methods
 Comput. Chem. Eng
, 1996
"... Ideally, for the needs of robust process simulation, one would like a nonlinear equation solving technique that can find any and all roots to a problem, and do so with mathematical certainty. In general, currently used techniques do not provide such rigorous guarantees. One approach to providing suc ..."
Abstract

Cited by 31 (19 self)
 Add to MetaCart
Ideally, for the needs of robust process simulation, one would like a nonlinear equation solving technique that can find any and all roots to a problem, and do so with mathematical certainty. In general, currently used techniques do not provide such rigorous guarantees. One approach to providing such assurances can be found in the use of interval analysis, in particular the use of interval Newton methods combined with generalized bisection. However, these methods have generally been regarded as extremely inefficient. Motivated by recent progress in interval analysis, as well as continuing advances in computer speed and the availability of parallel computing, we consider here the feasibility of using an interval Newton/generalized bisection algorithm on process simulation problems. An algorithm designed for parallel computing on an MIMD machine is described, and results of tests on several problems are reported. Experiments indicate that the interval Newton/generalized bisection method works quite well on relatively small problems, providing a powerful method for finding all solutions to a problem. For larger problems, the method performs inconsistently with regard to efficiency, at least when reasonable initial bounds are not provided.
Enhanced Interval Analysis for Phase Stability: Cubic Equation of State Models
 IND. ENG. CHEM. RES
, 1998
"... The reliable prediction of phase stability is a challenging computational problem in chemical process simulation, optimization and design. The phase stability problem can be formulated either as a minimization problem or as an equivalent nonlinear equation solving problem. Conventional solution meth ..."
Abstract

Cited by 30 (20 self)
 Add to MetaCart
The reliable prediction of phase stability is a challenging computational problem in chemical process simulation, optimization and design. The phase stability problem can be formulated either as a minimization problem or as an equivalent nonlinear equation solving problem. Conventional solution methods are initialization dependent, and may fail by converging to trivial or nonphysical solutions or to a point that is a local but not global minimum. Thus there has been considerable recent interest in developing more reliable techniques for stability analysis. Recently we have demonstrated, using cubic equation of state models, a technique that can solve the phase stability problem with complete reliability. The technique, which is based on interval analysis, is initialization independent, and if properly implemented provides a mathematical guarantee that the correct solution to the phase stability problem has been found. However, there is much room for improvement in the computational efficiency of the technique. In this paper we consider two means of enhancing the efficiency of the method, both based on sharpening the range of interval function evaluations. Results indicate that by using the enhanced method, computation times can be reduced by nearly an order of magnitude in some cases.
Motivations for an arbitrary precision interval arithmetic and the MPFI library
 Reliable Computing
, 2002
"... Nowadays, computations involve more and more operations and consequently errors. The limits of applicability of some numerical algorithms are now reached: for instance the theoretical stability of a dense matrix factorization (LU or QR) is ensured under the assumption that n 3 u < 1, where n is the ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
Nowadays, computations involve more and more operations and consequently errors. The limits of applicability of some numerical algorithms are now reached: for instance the theoretical stability of a dense matrix factorization (LU or QR) is ensured under the assumption that n 3 u < 1, where n is the dimension of the matrix and u = 1 + − 1, with 1 + the smallest floatingpoint larger than 1; this means that n must be less than 200,000, which is almost reached by modern simulations. The numerical quality of solvers is now an issue, and not only their mathematical quality. Let us cite studies performed by the CEA (French Nuclear Agency) on the simulation of nuclear plant accidents and also softwares controlling and possibly correcting numerical programs, such as Cadna [10] or Cena [20]. Another approach consists in computing with certified enclosures, namely interval arithmetic [21, 2, 18]. The fundamental principle of this arithmetic consists in replacing every number by an interval enclosing it. For instance, π cannot be exactly represented using a binary or decimal arithmetic, but it
Robust phase stability analysis using interval methods
 In AIChE Symp. Ser
, 1995
"... Conventional equation solving and optimization techniques for solving the phase stability problem may fail to converge or may converge to an incorrect result. A technique for solving the problem with mathematical certainty is needed. One approach to providing such assurance can be found in the use o ..."
Abstract

Cited by 22 (21 self)
 Add to MetaCart
Conventional equation solving and optimization techniques for solving the phase stability problem may fail to converge or may converge to an incorrect result. A technique for solving the problem with mathematical certainty is needed. One approach to providing such assurance can be found in the use of interval methods. An interval Newton/generalized bisection technique is applied here to solve the phase stability problem. Results for two models of liquidphase systems, using several different feed compositions, indicate that the technique used is reliable and very efficient.