Results 1  10
of
168
A Mortar Finite Element Method Using Dual Spaces For The Lagrange Multiplier
 SIAM J. Numer. Anal
, 1998
"... The mortar finite element method allows the coupling of different discretization schemes and triangulations across subregion boundaries. In the original mortar approach the matching at the interface is realized by enforcing an orthogonality relation between the jump and a modified trace space which ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
The mortar finite element method allows the coupling of different discretization schemes and triangulations across subregion boundaries. In the original mortar approach the matching at the interface is realized by enforcing an orthogonality relation between the jump and a modified trace space which serves as a space of Lagrange multipliers. In this paper, this Lagrange multiplier space is replaced by a dual space without losing the optimality of the method. The advantage of this new approach is that the matching condition is much easier to realize. In particular, all the basis functions of the new method are supported in a few elements. The mortar map can be represented by a diagonal matrix; in the standard mortar method a linear system of equations must be solved. The problem is considered in a positive definite nonconforming variational as well as an equivalent saddlepoint formulation.
Overlapping Schwarz Methods On Unstructured Meshes Using NonMatching Coarse Grids
 Numer. Math
, 1996
"... . We consider two level overlapping Schwarz domain decomposition methods for solving the finite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine grid may ..."
Abstract

Cited by 49 (17 self)
 Add to MetaCart
. We consider two level overlapping Schwarz domain decomposition methods for solving the finite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine grid may be used. Our theory requires no assumption on the substructures which constitute the whole domain, so each substructure can be of arbitrary shape and of different size. The global coarse mesh is allowed to be nonnested to the fine grid on which the discrete problem is to be solved and both the coarse meshes and the fine meshes need not be quasiuniform. In addition, the domains defined by the fine and coarse grid need not be identical. The one important constraint is that the closure of the coarse grid must cover any portion of the fine grid boundary for which Neumann boundary conditions are given. In this general setting, our algorithms have the same optimal convergence rate of the usual ...
The Adaptive Multilevel Finite Element Solution of the PoissonBoltzmann Equation on Massively Parallel Computers
 J. COMPUT. CHEM
, 2000
"... Using new methods for the parallel solution of elliptic partial differential equations, the teraflops computing power of massively parallel computers can be leveraged to perform electrostatic calculations on large biological systems. This paper describes the adaptive multilevel finite element soluti ..."
Abstract

Cited by 43 (14 self)
 Add to MetaCart
Using new methods for the parallel solution of elliptic partial differential equations, the teraflops computing power of massively parallel computers can be leveraged to perform electrostatic calculations on large biological systems. This paper describes the adaptive multilevel finite element solution of the PoissonBoltzmann equation for a microtubule on the NPACI IBM Blue Horizon supercomputer. The microtubule system is 40 nm in length and 24 nm in diameter, consists of roughly 600,000 atoms, and has a net charge of1800 e. PoissonBoltzmann calculations are performed for several processor configurations and the algorithm shows excellent parallel scaling.
Convergence of adaptive finite element methods
 SIAM Review
"... Abstract. We prove convergence of adaptive finite element methods (AFEM) for general (nonsymmetric) second order linear elliptic PDE, thereby extending the result of Morin et al [6, 7]. The proof relies on quasiorthogonality, which accounts for the bilinear form not being a scalar product, together ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
Abstract. We prove convergence of adaptive finite element methods (AFEM) for general (nonsymmetric) second order linear elliptic PDE, thereby extending the result of Morin et al [6, 7]. The proof relies on quasiorthogonality, which accounts for the bilinear form not being a scalar product, together with novel error and oscillation reduction estimates, which now do not decouple. We show that AFEM is a contraction for the sum of energy error plus oscillation. Numerical experiments, including oscillatory coefficients and convectiondiffusion PDE, illustrate the theory and yield optimal meshes.
Adaptive numerical treatment of elliptic systems on manifolds
 Advances in Computational Mathematics, 15(1):139
, 2001
"... ABSTRACT. Adaptive multilevel finite element methods are developed and analyzed for certain elliptic systems arising in geometric analysis and general relativity. This class of nonlinear elliptic systems of tensor equations on manifolds is first reviewed, and then adaptive multilevel finite element ..."
Abstract

Cited by 41 (24 self)
 Add to MetaCart
ABSTRACT. Adaptive multilevel finite element methods are developed and analyzed for certain elliptic systems arising in geometric analysis and general relativity. This class of nonlinear elliptic systems of tensor equations on manifolds is first reviewed, and then adaptive multilevel finite element methods for approximating solutions to this class of problems are considered in some detail. Two a posteriori error indicators are derived, based on local residuals and on global linearized adjoint or dual problems. The design of Manifold Code (MC) is then discussed; MC is an adaptive multilevel finite element software package for 2 and 3manifolds developed over several years at Caltech and UC San Diego. It employs a posteriori error estimation, adaptive simplex subdivision, unstructured algebraic multilevel methods, global inexact Newton methods, and numerical continuation methods for the numerical solution of nonlinear covariant elliptic systems on 2 and 3manifolds. Some of the more interesting features of MC are described in detail, including some new ideas for topology and geometry representation in simplex meshes, and an unusual partition of unitybased method for exploiting parallel computers. A short example is then given which involves the Hamiltonian and momentum constraints in the Einstein equations, a representative nonlinear 4component covariant elliptic system on a Riemannian 3manifold which arises in general relativity. A number of operator properties and solvability results recently established are first summarized, making possible two quasioptimal a priori error estimates for Galerkin approximations which are then derived. These two results complete the theoretical framework for effective use of adaptive multilevel finite element methods. A sample calculation using the MC software is then presented.
A nonoverlapping domain decomposition method for Maxwellâ€™s equations in three dimensions
 SIAM J. Numer. Anal
"... Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with muc ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with much simpler coarse solvers. Though the condition number of the preconditioned system may not have a good bound, we are able to show that the convergence rate of the PCG method with such substructuring preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficient in the elliptic equation. 1.
A twolevel additive Schwarz preconditioner for nonconforming plate elements
 Numer. Math
, 1994
"... Abstract. Twolevel additive Schwarz preconditioners are developed for the nonconforming P1 finite element approximation of scalar secondorder symmetric positive definite elliptic boundary value problems, the Morley finite element approximation of the biharmonic equation, and the divergencefree no ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
Abstract. Twolevel additive Schwarz preconditioners are developed for the nonconforming P1 finite element approximation of scalar secondorder symmetric positive definite elliptic boundary value problems, the Morley finite element approximation of the biharmonic equation, and the divergencefree nonconforming P1 finite element approximation of the stationary Stokes equations. The condition numbers of the preconditioned systems are shown to be bounded independent of mesh sizes and the number of subdomains in the case of generous overlap. 1.
Some Nonoverlapping Domain Decomposition Methods
, 1998
"... . The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the Neumann ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
. The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the NeumannNeumanntype methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include localglobal and globallocal techniques. The analyses for both two and threedimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived. Key words. nonoverlapping domain decomposition, Schur complement, localglobal and globallocal techniques, jumps in coe#cients, substructuring, NeumannNeumann, balancing methods AMS subject classifications. 65N30, 65N55, 65F10 PII. S0036144596306800 1. Introduction. T...
Quasioptimal convergence rate for an adaptive finite element method
, 2007
"... We analyze the simplest and most standard adaptive finite element method (AFEM), with any polynomial degree, for general second order linear, symmetric elliptic operators. As it is customary in practice, AFEM marks exclusively according to the error estimator and performs a minimal element refineme ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
We analyze the simplest and most standard adaptive finite element method (AFEM), with any polynomial degree, for general second order linear, symmetric elliptic operators. As it is customary in practice, AFEM marks exclusively according to the error estimator and performs a minimal element refinement without the interior node property. We prove that AFEM is a contraction for the sum of energy error and scaled error estimator, between two consecutive adaptive loops. This geometric decay is instrumental to derive optimal cardinality of AFEM. We show that AFEM yields a decay rate of energy error plus oscillation in terms of number of degrees of freedom as dictated by the best approximation for this combined nonlinear quantity.
Coupling Fluid Flow with Porous Media Flow
 SIAM J. Numer. Anal
, 2003
"... The transport of substances back and forth between surface water and groundwater is a very serious problem. We study herein the mathematical model of this setting consisting of the Stokes equations in the fluid region coupled with the Darcy equations in the porous medium, coupled across the interfac ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
The transport of substances back and forth between surface water and groundwater is a very serious problem. We study herein the mathematical model of this setting consisting of the Stokes equations in the fluid region coupled with the Darcy equations in the porous medium, coupled across the interface by the BeaversJosephSa#man conditions. We prove existence of weak solutions and give a complete analysis of a finite element scheme which allows a simulation of the coupled problem to be uncoupled into steps involving porous media and fluid flow subproblems. This is important because there are many "legacy" codes available which have been optimized for uncoupled porous media and fluid flow.