Results 1  10
of
450
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 278 (10 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Compact routing schemes
 in SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures
"... We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extrem ..."
Abstract

Cited by 237 (5 self)
 Add to MetaCart
(Show Context)
We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extremely short. The routing decision at each node takes constant time. Yet, the stretch of these routing schemes, i.e., the worst ratio between the cost of the path on which a packet is routed and the cost of the cheapest path from source to destination, is a small constant. Our schemes achieve a nearoptimal tradeoff between the size of the routing tables used and the resulting stretch. More specifically, we obtain: 1. A routing scheme that uses only ~ O(n 1=2) bits of memory at each node of an nnode network that has stretch 3. The space is optimal, up to logarithmic factors, in the sense that
AdHoc Networks Beyond Unit Disk Graphs
, 2003
"... In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer ..."
Abstract

Cited by 143 (11 self)
 Add to MetaCart
In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer than 1. We show that  in comparison to the cost known on Unit Disk Graphs  the complexity results in this model contain the additional factor 1/d&sup2;. We prove that in Quasi Unit Disk Graphs flooding is an asymptotically messageoptimal routing technique, provide a geometric routing algorithm being more efficient above all in dense networks, and show that classic geometric routing is possible with the same performance guarantees as for Unit Disk Graphs if d 1/ # 2.
What Cannot Be Computed Locally!
 In Proceedings of the 23 rd ACM Symposium on the Principles of Distributed Computing (PODC
, 2004
"... We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number ..."
Abstract

Cited by 141 (28 self)
 Add to MetaCart
(Show Context)
We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number of nodes and the largest degree in the graph. The number of rounds required in order to achieve a constant or even only a polylogarithmic approximation ratio is at log n/ log log n) and#1 #/ log log #). By a simple reduction, the latter lower bounds also hold for the construction of maximal matchings and maximal independent sets.
Does Topology Control Reduce Interference
 In Proceedings of the 5 th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC
, 2004
"... Topology control in adhoc networks tries to lower node energy consumption by reducing transmission power and by confining interference, collisions and consequently retransmissions. Commonly low interference is claimed to be a consequence to sparseness of the resulting topology. In this paper we dis ..."
Abstract

Cited by 129 (10 self)
 Add to MetaCart
(Show Context)
Topology control in adhoc networks tries to lower node energy consumption by reducing transmission power and by confining interference, collisions and consequently retransmissions. Commonly low interference is claimed to be a consequence to sparseness of the resulting topology. In this paper we disprove this implication. In contrast to most of the related work—claiming to solve the interference issue by graph sparseness without providing clear argumentation or proofs—, we provide a concise and intuitive definition of interference. Based on this definition we show that most currently proposed topology control algorithms do not effectively constrain interference. Furthermore we propose connectivitypreserving and spanner constructions that are interferenceminimal.
Throughput guarantees through maximal scheduling in multihop wireless networks
, 2005
"... We address the question of providing throughput guarantees through distributed scheduling, which has remained an open problem for some time. We consider a simple distributed scheduling strategy, maximal scheduling, and prove that it attains a guaranteed fraction of the maximum throughput region in a ..."
Abstract

Cited by 112 (13 self)
 Add to MetaCart
We address the question of providing throughput guarantees through distributed scheduling, which has remained an open problem for some time. We consider a simple distributed scheduling strategy, maximal scheduling, and prove that it attains a guaranteed fraction of the maximum throughput region in arbitrary wireless networks. The guaranteed fraction depends on “interference degree ” of the network which is the maximum number of sessions that interfere with any given session in the network and do not interfere with each other. Depending on the nature of communication, the transmission powers and the propagation models, the guaranteed fraction can be lower bounded by the maximum link degrees in the underlying topology, or even by constants that are independent of the topology. The guarantees also hold in networks with arbitrary number of frequencies. We prove that the guarantees are tight in that they can not be improved any further with maximal scheduling. I.
The Internet ASLevel Topology: Three Data Sources and One Definitive Metric
"... We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the W ..."
Abstract

Cited by 107 (15 self)
 Add to MetaCart
We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.
The price of being nearsighted
 In SODA ’06: Proceedings of the seventeenth annual ACMSIAM symposium on Discrete algorithm
, 2006
"... Achieving a global goal based on local information is challenging, especially in complex and largescale networks such as the Internet or even the human brain. In this paper, we provide an almost tight classification of the possible tradeoff between the amount of local information and the quality o ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
(Show Context)
Achieving a global goal based on local information is challenging, especially in complex and largescale networks such as the Internet or even the human brain. In this paper, we provide an almost tight classification of the possible tradeoff between the amount of local information and the quality of the global solution for general covering and packing problems. Specifically, we give a distributed algorithm using only small messages which obtains an (ρ∆) 1/kapproximation for general covering and packing problems in time O(k 2), where ρ depends on the LP’s coefficients. If message size is unbounded, we present a second algorithm that achieves an O(n 1/k) approximation in O(k) rounds. Finally, we prove that these algorithms are close to optimal by giving a lower bound on the approximability of packing problems given that each node has to base its decision on information from its kneighborhood. 1
LowerStretch Spanning Trees
, 2005
"... ... as a subgraph a spanning tree into which the edges of G can be embedded with average stretch exp (O ( √ log n log log n)), and that there exists an nvertex graph G such that all its spanning trees have average stretch Ω(log n). Closing the exponential gap between these upper and lower bounds i ..."
Abstract

Cited by 84 (11 self)
 Add to MetaCart
(Show Context)
... as a subgraph a spanning tree into which the edges of G can be embedded with average stretch exp (O ( √ log n log log n)), and that there exists an nvertex graph G such that all its spanning trees have average stretch Ω(log n). Closing the exponential gap between these upper and lower bounds is listed as one of the longstanding open questions in the area of lowdistortion embeddings of metrics (Matousek 2002). We significantly reduce this gap by constructing a spanning tree in G of average stretch O((log n log log n) 2). Moreover, we show that this tree can be constructed in time O(m log 2 n) in general, and in time O(m log n) if the input graph is unweighted. The main ingredient in our construction is a novel graph decomposition technique. Our new algorithm can be immediately used to improve the running time of the recent solver for diagonally dominant linear systems of Spielman and Teng from to m2 (O( √ log n log log n)) log(1/ɛ) m log O(1) n log(1/ɛ), and to O(n(log n log log n) 2 log(1/ɛ)) when the system is planar. Applying a recent reduction of Boman, Hendrickson and Vavasis, this provides an O(n(log n log log n) 2 log(1/ɛ)) time algorithm for solving the linear systems that arise when applying the finite element method to solve twodimensional elliptic partial differential equations. Our result can also be used to improve several earlier approximation algorithms that use lowstretch spanning trees.