Results 1  10
of
54
Distance Labeling in Graphs
, 2000
"... We consider the problem of labeling the nodes of a graph in a way that will allow one to compute the distance between any two nodes directly from their labels (without using any additional information). Our main interest is in the minimal length of labels needed in different cases. We obtain upper a ..."
Abstract

Cited by 102 (26 self)
 Add to MetaCart
We consider the problem of labeling the nodes of a graph in a way that will allow one to compute the distance between any two nodes directly from their labels (without using any additional information). Our main interest is in the minimal length of labels needed in different cases. We obtain upper and lower bounds for several interesting families of graphs. In particular, our main results are the following. For general graphs, we show that the length needed is (n). For trees, we show that the length needed is (log 2 n). For planar graphs, we show an upper bound of O( p n log n) and a lower bound of n 1=3 ). For bounded degree graphs, we show a lower bound of p n). The upper bounds for planar graphs and for trees follow by a more general upper bound for graphs with a r(n)separator. The two lower bounds, however, are obtained by two different arguments that may be interesting in their own right. We also show some lower bounds on the length of the labels, even if it is only...
Nearest Common Ancestors: A survey and a new distributed algorithm
, 2002
"... Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete ba ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete balanced binary trees is straightforward. Furthermore, for complete balanced binary trees we can easily solve the problem in a distributed way by labeling the nodes of the tree such that from the labels of two nodes alone one can compute the label of their nearest common ancestor. Whether it is possible to distribute the data structure into short labels associated with the nodes is important for several applications such as routing. Therefore, related labeling problems have received a lot of attention recently.
Compact and Localized Distributed Data Structures
 JOURNAL OF DISTRIBUTED COMPUTING
, 2001
"... This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sou ..."
Abstract

Cited by 72 (25 self)
 Add to MetaCart
This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sought information involves only a small and local set of entities. In contrast, localized data representation schemes are based on breaking the information into small local pieces, or labels, selected in a way that allows one to infer information regarding a small set of entities directly from their labels, without using any additional (global) information. The survey focuses on combinatorial and algorithmic techniques, and covers complexity results on various applications, including compact localized schemes for message routing in communication networks, and adjacency and distance labeling schemes.
Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses
, 1998
"... . We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than th ..."
Abstract

Cited by 50 (11 self)
 Add to MetaCart
. We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than the previously known results in each case. 1 Introduction This paper investigates the problem of encoding a graph G with n nodes and m edges into a binary string S. This problem has been extensively studied with three objectives: (1) minimizing the length of S, (2) minimizing the time needed to compute and decode S, and (3) supporting queries efficiently. A number of coding schemes with different tradeoffs have been proposed. The adjacencylist encoding of a graph is widely useful but requires 2mdlog ne bits. (All logarithms are of base 2.) A folklore scheme uses 2n bits to encode a rooted nnode tree into a string of n pairs of balanced parentheses. Since the total number of such trees is...
Improved Labeling Scheme for Ancestor Queries
, 2001
"... We present a labeling scheme for rooted trees that supports ancestor queries. Given a tree, the scheme assigns to each node a label which is a binary string. Given the labels of any two nodes u and v, it can in constant time be determined whether u is ancestor to v alone from these labels. For tr ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
We present a labeling scheme for rooted trees that supports ancestor queries. Given a tree, the scheme assigns to each node a label which is a binary string. Given the labels of any two nodes u and v, it can in constant time be determined whether u is ancestor to v alone from these labels. For trees of size n our scheme assigns labels of size bounded by log n + O( p log n) bits to each node. This improves a recent result of Abiteboul, Kaplan and Milo at SODA'01, where a labeling scheme with labels of size 3=2 log n+ O(log log n) was presented. The problem is among other things motivated in connection with ecient representation of information for XMLbased search engines for the internet.
Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing
 In 12 th Symposium on Discrete Algorithms (SODA
, 2001
"... The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar graph. We give a lineartime algorithm that obtains an orderly pair (H
Labeling schemes for small distances in trees
 In Proceedings of the ACMSIAM Symposium on Discrete Algorithms
, 2003
"... Abstract. We consider labeling schemes for trees, supporting various relationships between nodes at small distance. For instance, we show that given a tree T and an integer k we can assign labels to each node of T such that given the label of two nodes we can decide, from these two labels alone, if ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
Abstract. We consider labeling schemes for trees, supporting various relationships between nodes at small distance. For instance, we show that given a tree T and an integer k we can assign labels to each node of T such that given the label of two nodes we can decide, from these two labels alone, if the distance between v and w is at most k and if so compute it. For trees with n nodes and k ≥ 2, we give a lower bound on the maximum label length of log n + Ω(log log n) bits, and for constant k, we give an upper bound of log n+O(log log n). Bounds for ancestor, sibling, connectivity and bi and triconnectivity labeling schemes are also presented. Key words. Labeling schemes, trees. AMS subject classifications. 68R10, 68W01
A Fast General Methodology For InformationTheoretically Optimal Encodings Of Graphs
, 1999
"... . We propose a fast methodology for encoding graphs with informationtheoretically minimum numbers of bits. Specifically, a graph with property is called a graph. If satisfies certain properties, then an nnode medge graph G can be encoded by a binary string X such that (1) G and X can be obtai ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
. We propose a fast methodology for encoding graphs with informationtheoretically minimum numbers of bits. Specifically, a graph with property is called a graph. If satisfies certain properties, then an nnode medge graph G can be encoded by a binary string X such that (1) G and X can be obtained from each other in O(n log n) time, and (2) X has at most fi(n)+o(fi(n)) bits for any continuous superadditive function fi(n) so that there are at most 2 fi(n)+o(fi(n)) distinct nnode graphs. The methodology is applicable to general classes of graphs; this paper focuses on planar graphs. Examples of such include all conjunctions over the following groups of properties: (1) G is a planar graph or a plane graph; (2) G is directed or undirected; (3) G is triangulated, triconnected, biconnected, merely connected, or not required to be connected; (4) the nodes of G are labeled with labels from f1; : : : ; ` 1 g for ` 1 n; (5) the edges of G are labeled with labels from f1; : : : ; ` 2 ...
Lineartime succinct encodings of planar graphs via canonical orderings
 SIAM Journal on Discrete Mathematics
, 1999
"... Abstract. Let G be an embedded planar undirected graph that has n vertices, m edges, and f faces but has no selfloop or multiple edge. If G is triangulated, we can encode it using 4 m − 1 bits, improving on the best previous bound of about 1.53m bits. In case exponential time 3 is acceptable, rough ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
Abstract. Let G be an embedded planar undirected graph that has n vertices, m edges, and f faces but has no selfloop or multiple edge. If G is triangulated, we can encode it using 4 m − 1 bits, improving on the best previous bound of about 1.53m bits. In case exponential time 3 is acceptable, roughly 1.08m bits have been known to suffice. If G is triconnected, we use at most (2.5 + 2 log 3) min{n, f} −7 bits, which is at most 2.835m bits and smaller than the best previous bound of 3m bits. Both of our schemes take O(n) time for encoding and decoding.
Distributed Verification of Minimum Spanning Trees
 Proc. 25th Annual Symposium on Principles of Distributed Computing
, 2006
"... The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in ..."
Abstract

Cited by 19 (17 self)
 Add to MetaCart
The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in a distributed manner, i.e., every node “knows ” which of its own emanating edges belong to the tree. Informally, the distributed MST verification problem is the following. Label the vertices of the graph in such a way that for every node, given (its own label and) the labels of its neighbors only, the node can detect whether these edges are indeed its MST edges. In this paper we present such a verification scheme with a maximum label size of O(log n log W), where n is the number of nodes and W is the largest weight of an edge. We also give a matching lower bound of Ω(log n log W) (except when W ≤ log n). Both our bounds improve previously known bounds for the problem. Our techniques (both for the lower bound and for the upper bound) may indicate a strong relation between the fields of proof labeling schemes and implicit labeling schemes. For the related problem of tree sensitivity also presented by Tarjan, our method yields rather efficient schemes for both the distributed and the sequential settings.